Current State-of-the-Art
Engineering temporal stability will be critical for the advancement of microbiome engineering. However, no framework for predicting or engineering such stability yet exists.1Lawson, C. E., Harcombe, W. R., Hatzenpichler, R., Lindemann, S. R., Löffler, F. E., O’Malley, M. A., García Martín, H., Pfleger, B. F., Raskin, L., Venturelli, O. S., Weissbrodt, D. G., Noguera, D. R., & McMahon, K. D. (2019). Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 17(12), 725–741. View Publication The development of a time resolved, high-throughput gut microbiome model system helped generate a predictive dynamic model to examine community evolution over time.2Venturelli, O. S., Carr, A. V., Fisher, G., Hsu, R. H., Lau, R., Bowen, B. P., Hromada, S., Northen, T., & Arkin, A. P. (2018). Deciphering microbial interactions in synthetic human gut microbiome communities. Molecular Systems Biology, 14(6). View Publication The model was capable of predicting positive and negative interactions within the community, but was not sufficient to predict key species that impacted community assembly. Increasing engineered complexity also has shown to decrease stability over time3Venturelli, O. S., Carr, A. V., Fisher, G., Hsu, R. H., Lau, R., Bowen, B. P., Hromada, S., Northen, T., & Arkin, A. P. (2018). Deciphering microbial interactions in synthetic human gut microbiome communities. Molecular Systems Biology, 14(6). View Publication,4Zhang, Haoqian, Lin, M., Shi, H., Ji, W., Huang, L., Zhang, X., Shen, S., Gao, R., Wu, S., Tian, C., Yang, Z., Zhang, G., He, S., Wang, H., Saw, T., Chen, Y., & Ouyang, Q. (2014). Programming a Pavlovian-like conditioning circuit in Escherichia coli. Nature Communications, 5(1), 3102. View Publication so the capacity to decrease a new technology’s microbial cost (e.g., metabolically, genetically) will be critical for its long-term maintenance in a microbiome. Greater temporal control over microbiomes will require a better understanding of the population dynamics and ecological interactions that shape the evolution of a microbiome, such as random mutations and horizontal gene transfer.5Cao, X., Hamilton, J. J., & Venturelli, O. S. (2019). Understanding and Engineering Distributed Biochemical Pathways in Microbial Communities. Biochemistry, 58(2), 94–107. View Publication Temporal control will also be enabled by advances in molecular clocks that can regulate microbiome functions over time. A synchronized lysis circuit has been engineered in Salmonella typhimurium to induce population lysis at a set cell density, without regard to time.6Din, M. O., Danino, T., Prindle, A., Skalak, M., Selimkhanov, J., Allen, K., Julio, E., Atolia, E., Tsimring, L. S., Bhatia, S. N., & Hasty, J. (2016). Synchronized cycles of bacterial lysis for in vivo delivery. Nature, 536(7614), 81–85. View Publication Emerging tools have extended the time span that engineered genetic clocks can be used to days,7Hussain, F., Gupta, C., Hirning, A. J., Ott, W., Matthews, K. S., Josic, K., & Bennett, M. R. (2014). Engineered temperature compensation in a synthetic genetic clock. Proceedings of the National Academy of Sciences, 111(3), 972–977. View Publication,8Riglar, D. T., Richmond, D. L., Potvin-Trottier, L., Verdegaal, A. A., Naydich, A. D., Bakshi, S., Leoncini, E., Lyon, L. G., Paulsson, J., & Silver, P. A. (2019). Bacterial variability in the mammalian gut captured by a single-cell synthetic oscillator. Nature Communications, 10(1), 4665. View Publication but these must continue to be extended to obtain full temporal stability over engineered microbiomes. Some reactive transport models and other simulation tools to predict physical dynamics have been developed.9Mills, R. T., Lu, C., Lichtner, P. C., & Hammond, G. E. (2007). Simulating subsurface flow and transport on ultrascale computers using PFLOTRAN. Journal of Physics: Conference Series, 78, 012051. View Publication,10Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. View Publication However, the state-of-the-art is a far reach from selectively manipulating or eliminating individual constituents of a microbial community, particularly in tailored-spectrum and spatiotemporal means.
Breakthrough Capabilities & Milestones
Determine the physical dynamics of a microbiome over time.
Measure nutrient and water flow through diverse environments (e.g., soil, soil to a plant, in vivo) and community members (e.g., viruses, bacteria, fungi) in high-throughput.
Create high-throughput, multiplexed, and automated systems to quantify physiological parameters of a complex microbiome in a controlled environment.
Measure environmental dispersal and drift of microbes, phages, and chemicals across different environments to help generate predictive ecological models.
Generate methods that enable rapid, high-throughput quantification of physiological parameters in complex, natural microbiomes.
Engineer mechanisms to control the growth and spread of a microbiome over time.
Engineer microbiomes that integrate programmed self-destruction with cell oscillators, so death is initiated based on time rather than cell density.
Use in situ measurements at a single point in time to predict future limiting factors (e.g., space, nutrients, specific trace metals, essential amino acids) for a microbiome.
Engineer cell-cell circuits that kill a counting strain, plus neighboring species in the microbiome, after a given number of cell divisions is reached.
Engineer a microbiome that contains a ‘universal clock’ species that triggers self-destruction of the microbiome upon reaching a functional endpoint.
Design microbiomes that can operate at multiple timescales to enable more complex functions (e.g., lay dormant for months to perform functions on second or minute timescales).
Engineer microbiomes that retain function on short to evolutionary (i.e., months to years) time scales.
Model the fitness impacts of microbiome engineering and determine its contribution to escape frequency and competitive advantage.
Design and build genetic components that are more robust to mutation or loss than conventional genetic designs.
Map evolutionary trade offs when multiple pressures are applied to a microbiome (including long-term continuous culturing) and use this information to design resilient organisms or combinatorial controls that prevent evolution away from a desired function.
Engineer microbiomes that remove or kill community members that lose their engineered function.
Engineer an organism that influences future successional dynamics in an environment (e.g., niche construction, niche preemption, and priority effects), so the microbiome influences the surrounding environment past the microbiome’s functional lifespan.
Footnotes
- Lawson, C. E., Harcombe, W. R., Hatzenpichler, R., Lindemann, S. R., Löffler, F. E., O’Malley, M. A., García Martín, H., Pfleger, B. F., Raskin, L., Venturelli, O. S., Weissbrodt, D. G., Noguera, D. R., & McMahon, K. D. (2019). Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 17(12), 725–741. https://doi.org/10.1038/s41579-019-0255-9
- Venturelli, O. S., Carr, A. V., Fisher, G., Hsu, R. H., Lau, R., Bowen, B. P., Hromada, S., Northen, T., & Arkin, A. P. (2018). Deciphering microbial interactions in synthetic human gut microbiome communities. Molecular Systems Biology, 14(6). https://doi.org/10.15252/msb.20178157
- Venturelli, O. S., Egbert, R. G., & Arkin, A. P. (2016). Towards Engineering Biological Systems in a Broader Context. Journal of Molecular Biology, 428(5), 928–944. https://doi.org/10.1016/j.jmb.2015.10.025
- Zhang, H., Lin, M., Shi, H., Ji, W., Huang, L., Zhang, X., Shen, S., Gao, R., Wu, S., Tian, C., Yang, Z., Zhang, G., He, S., Wang, H., Saw, T., Chen, Y., & Ouyang, Q. (2014). Programming a Pavlovian-like conditioning circuit in Escherichia coli. Nature Communications, 5(1), 3102. https://doi.org/10.1038/ncomms4102
- Cao, X., Hamilton, J. J., & Venturelli, O. S. (2019). Understanding and Engineering Distributed Biochemical Pathways in Microbial Communities. Biochemistry, 58(2), 94–107. https://doi.org/10.1021/acs.biochem.8b01006
- Din, M. O., Danino, T., Prindle, A., Skalak, M., Selimkhanov, J., Allen, K., Julio, E., Atolia, E., Tsimring, L. S., Bhatia, S. N., & Hasty, J. (2016). Synchronized cycles of bacterial lysis for in vivo delivery. Nature, 536(7614), 81–85. https://doi.org/10.1038/nature18930
- Hussain, F., Gupta, C., Hirning, A. J., Ott, W., Matthews, K. S., Josic, K., & Bennett, M. R. (2014). Engineered temperature compensation in a synthetic genetic clock. Proceedings of the National Academy of Sciences, 111(3), 972–977. https://doi.org/10.1073/pnas.1316298111
- Riglar, D. T., Richmond, D. L., Potvin-Trottier, L., Verdegaal, A. A., Naydich, A. D., Bakshi, S., Leoncini, E., Lyon, L. G., Paulsson, J., & Silver, P. A. (2019). Bacterial variability in the mammalian gut captured by a single-cell synthetic oscillator. Nature Communications, 10(1), 4665. https://doi.org/10.1038/s41467-019-12638-z
- Mills, R. T., Lu, C., Lichtner, P. C., & Hammond, G. E. (2007). Simulating subsurface flow and transport on ultrascale computers using PFLOTRAN. Journal of Physics: Conference Series, 78, 012051. https://doi.org/10.1088/1742-6596/78/1/012051
- Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/jcc.20289
- Gao, J., Sasse, J., Lewald, K. M., Zhalnina, K., Cornmesser, L. T., Duncombe, T. A., Yoshikuni, Y., Vogel, J. P., Firestone, M. K., & Northen, T. R. (2018). Ecosystem Fabrication (EcoFAB) Protocols for The Construction of Laboratory Ecosystems Designed to Study Plant-microbe Interactions. Journal of Visualized Experiments, 134, 57170. https://doi.org/10.3791/57170
- Sasse, J., Kant, J., Cole, B. J., Klein, A. P., Arsova, B., Schlaepfer, P., Gao, J., Lewald, K., Zhalnina, K., Kosina, S., Bowen, B. P., Treen, D., Vogel, J., Visel, A., Watt, M., Dangl, J. L., & Northen, T. R. (2019). Multilab EcoFAB study shows highly reproducible physiology and depletion of soil metabolites by a model grass. New Phytologist, 222(2), 1149–1160. https://doi.org/10.1111/nph.15662
- Berry, D., & Loy, A. (2018). Stable-Isotope Probing of Human and Animal Microbiome Function. Trends in Microbiology, 26(12), 999–1007. PubMed. https://doi.org/10.1016/j.tim.2018.06.004
- Kortright, K. E., Chan, B. K., Koff, J. L., & Turner, P. E. (2019). Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host & Microbe, 25(2), 219–232. https://doi.org/10.1016/j.chom.2019.01.014
- Torres-Barceló, C. (2018). Phage Therapy Faces Evolutionary Challenges. Viruses, 10(6), 323. https://doi.org/10.3390/v10060323
- Baym, M., Stone, L. K., & Kishony, R. (2016). Multidrug evolutionary strategies to reverse antibiotic resistance. Science, 351(6268), aad3292–aad3292. https://doi.org/10.1126/science.aad3292