Microbiome Engineering
Spatiotemporal Control Goal:

Control the temporal dynamics of engineered microbiomes.

Current State-of-the-Art

Engineering temporal stability will be critical for the advancement of microbiome engineering. However, no framework for predicting or engineering such stability yet exists.1Lawson, C. E., Harcombe, W. R., Hatzenpichler, R., Lindemann, S. R., Löffler, F. E., O’Malley, M. A., García Martín, H., Pfleger, B. F., Raskin, L., Venturelli, O. S., Weissbrodt, D. G., Noguera, D. R., & McMahon, K. D. (2019). Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 17(12), 725–741. View Publication The development of a time resolved, high-throughput gut microbiome model system helped generate a predictive dynamic model to examine community evolution over time.2Venturelli, O. S., Carr, A. V., Fisher, G., Hsu, R. H., Lau, R., Bowen, B. P., Hromada, S., Northen, T., & Arkin, A. P. (2018). Deciphering microbial interactions in synthetic human gut microbiome communities. Molecular Systems Biology, 14(6). View Publication The model was capable of predicting positive and negative interactions within the community, but was not sufficient to predict key species that impacted community assembly. Increasing engineered complexity also has shown to decrease stability over time3Venturelli, O. S., Carr, A. V., Fisher, G., Hsu, R. H., Lau, R., Bowen, B. P., Hromada, S., Northen, T., & Arkin, A. P. (2018). Deciphering microbial interactions in synthetic human gut microbiome communities. Molecular Systems Biology, 14(6). View Publication,4Zhang, Haoqian, Lin, M., Shi, H., Ji, W., Huang, L., Zhang, X., Shen, S., Gao, R., Wu, S., Tian, C., Yang, Z., Zhang, G., He, S., Wang, H., Saw, T., Chen, Y., & Ouyang, Q. (2014). Programming a Pavlovian-like conditioning circuit in Escherichia coli. Nature Communications, 5(1), 3102. View Publication so the capacity to decrease a new technology’s microbial cost (e.g., metabolically, genetically) will be critical for its long-term maintenance in a microbiome. Greater temporal control over microbiomes will require a better understanding of the population dynamics and ecological interactions that shape the evolution of a microbiome, such as random mutations and horizontal gene transfer.5Cao, X., Hamilton, J. J., & Venturelli, O. S. (2019). Understanding and Engineering Distributed Biochemical Pathways in Microbial Communities. Biochemistry, 58(2), 94–107. View Publication Temporal control will also be enabled by advances in molecular clocks that can regulate microbiome functions over time. A synchronized lysis circuit has been engineered in Salmonella typhimurium to induce population lysis at a set cell density, without regard to time.6Din, M. O., Danino, T., Prindle, A., Skalak, M., Selimkhanov, J., Allen, K., Julio, E., Atolia, E., Tsimring, L. S., Bhatia, S. N., & Hasty, J. (2016). Synchronized cycles of bacterial lysis for in vivo delivery. Nature, 536(7614), 81–85. View Publication Emerging tools have extended the time span that engineered genetic clocks can be used to days,7Hussain, F., Gupta, C., Hirning, A. J., Ott, W., Matthews, K. S., Josic, K., & Bennett, M. R. (2014). Engineered temperature compensation in a synthetic genetic clock. Proceedings of the National Academy of Sciences, 111(3), 972–977. View Publication,8Riglar, D. T., Richmond, D. L., Potvin-Trottier, L., Verdegaal, A. A., Naydich, A. D., Bakshi, S., Leoncini, E., Lyon, L. G., Paulsson, J., & Silver, P. A. (2019). Bacterial variability in the mammalian gut captured by a single-cell synthetic oscillator. Nature Communications, 10(1), 4665. View Publication but these must continue to be extended to obtain full temporal stability over engineered microbiomes. Some reactive transport models and other simulation tools to predict physical dynamics have been developed.9Mills, R. T., Lu, C., Lichtner, P. C., & Hammond, G. E. (2007). Simulating subsurface flow and transport on ultrascale computers using PFLOTRAN. Journal of Physics: Conference Series, 78, 012051. View Publication,10Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. View Publication However, the state-of-the-art is a far reach from selectively manipulating or eliminating individual constituents of a microbial community, particularly in tailored-spectrum and spatiotemporal means.

Breakthrough Capabilities & Milestones

Determine the physical dynamics of a microbiome over time.

Engineer mechanisms to control the growth and spread of a microbiome over time.

Engineer microbiomes that retain function on short to evolutionary (i.e., months to years) time scales.

Footnotes

  1. Lawson, C. E., Harcombe, W. R., Hatzenpichler, R., Lindemann, S. R., Löffler, F. E., O’Malley, M. A., García Martín, H., Pfleger, B. F., Raskin, L., Venturelli, O. S., Weissbrodt, D. G., Noguera, D. R., & McMahon, K. D. (2019). Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 17(12), 725–741. https://doi.org/10.1038/s41579-019-0255-9
  2. Venturelli, O. S., Carr, A. V., Fisher, G., Hsu, R. H., Lau, R., Bowen, B. P., Hromada, S., Northen, T., & Arkin, A. P. (2018). Deciphering microbial interactions in synthetic human gut microbiome communities. Molecular Systems Biology, 14(6). https://doi.org/10.15252/msb.20178157
  3. Venturelli, O. S., Egbert, R. G., & Arkin, A. P. (2016). Towards Engineering Biological Systems in a Broader Context. Journal of Molecular Biology, 428(5), 928–944. https://doi.org/10.1016/j.jmb.2015.10.025
  4. Zhang, H., Lin, M., Shi, H., Ji, W., Huang, L., Zhang, X., Shen, S., Gao, R., Wu, S., Tian, C., Yang, Z., Zhang, G., He, S., Wang, H., Saw, T., Chen, Y., & Ouyang, Q. (2014). Programming a Pavlovian-like conditioning circuit in Escherichia coli. Nature Communications, 5(1), 3102. https://doi.org/10.1038/ncomms4102
  5. Cao, X., Hamilton, J. J., & Venturelli, O. S. (2019). Understanding and Engineering Distributed Biochemical Pathways in Microbial Communities. Biochemistry, 58(2), 94–107. https://doi.org/10.1021/acs.biochem.8b01006
  6. Din, M. O., Danino, T., Prindle, A., Skalak, M., Selimkhanov, J., Allen, K., Julio, E., Atolia, E., Tsimring, L. S., Bhatia, S. N., & Hasty, J. (2016). Synchronized cycles of bacterial lysis for in vivo delivery. Nature, 536(7614), 81–85. https://doi.org/10.1038/nature18930
  7. Hussain, F., Gupta, C., Hirning, A. J., Ott, W., Matthews, K. S., Josic, K., & Bennett, M. R. (2014). Engineered temperature compensation in a synthetic genetic clock. Proceedings of the National Academy of Sciences, 111(3), 972–977. https://doi.org/10.1073/pnas.1316298111
  8. Riglar, D. T., Richmond, D. L., Potvin-Trottier, L., Verdegaal, A. A., Naydich, A. D., Bakshi, S., Leoncini, E., Lyon, L. G., Paulsson, J., & Silver, P. A. (2019). Bacterial variability in the mammalian gut captured by a single-cell synthetic oscillator. Nature Communications, 10(1), 4665. https://doi.org/10.1038/s41467-019-12638-z
  9. Mills, R. T., Lu, C., Lichtner, P. C., & Hammond, G. E. (2007). Simulating subsurface flow and transport on ultrascale computers using PFLOTRAN. Journal of Physics: Conference Series, 78, 012051. https://doi.org/10.1088/1742-6596/78/1/012051
  10. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/jcc.20289
  11. Gao, J., Sasse, J., Lewald, K. M., Zhalnina, K., Cornmesser, L. T., Duncombe, T. A., Yoshikuni, Y., Vogel, J. P., Firestone, M. K., & Northen, T. R. (2018). Ecosystem Fabrication (EcoFAB) Protocols for The Construction of Laboratory Ecosystems Designed to Study Plant-microbe Interactions. Journal of Visualized Experiments, 134, 57170. https://doi.org/10.3791/57170
  12. Sasse, J., Kant, J., Cole, B. J., Klein, A. P., Arsova, B., Schlaepfer, P., Gao, J., Lewald, K., Zhalnina, K., Kosina, S., Bowen, B. P., Treen, D., Vogel, J., Visel, A., Watt, M., Dangl, J. L., & Northen, T. R. (2019). Multilab EcoFAB study shows highly reproducible physiology and depletion of soil metabolites by a model grass. New Phytologist, 222(2), 1149–1160. https://doi.org/10.1111/nph.15662
  13. Berry, D., & Loy, A. (2018). Stable-Isotope Probing of Human and Animal Microbiome Function. Trends in Microbiology, 26(12), 999–1007. PubMed. https://doi.org/10.1016/j.tim.2018.06.004
  14. Kortright, K. E., Chan, B. K., Koff, J. L., & Turner, P. E. (2019). Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host & Microbe, 25(2), 219–232. https://doi.org/10.1016/j.chom.2019.01.014
  15. Torres-Barceló, C. (2018). Phage Therapy Faces Evolutionary Challenges. Viruses, 10(6), 323. https://doi.org/10.3390/v10060323
  16. Baym, M., Stone, L. K., & Kishony, R. (2016). Multidrug evolutionary strategies to reverse antibiotic resistance. Science, 351(6268), aad3292–aad3292. https://doi.org/10.1126/science.aad3292
Last updated: October 1, 2020 Back