Microbiome Engineering
Spatiotemporal Control Goal:

Engineer the spatial characteristics of a microbiome.

Current State-of-the-Art

Uncontrolled spatial localization of engineered microbiomes, via growth, spread, or other mechanisms, could have detrimental health and environmental consequences, and limit the usefulness of engineered microbiomes. Additional tools are needed to help control the space occupied by engineered microbiomes, in response to external inputs and with autonomous feedback control. CRISPR-Cas circuits can be used to selectively kill bacteria.1Bikard, D., Euler, C. W., Jiang, W., Nussenzweig, P. M., Goldberg, G. W., Duportet, X., Fischetti, V. A., & Marraffini, L. A. (2014). Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nature Biotechnology, 32(11), 1146–1150. View Publication,2Caliando, B. J., & Voigt, C. A. (2015). Targeted DNA degradation using a CRISPR device stably carried in the host genome. Nature Communications, 6(1), 6989. View Publication,3Citorik, R. J., Mimee, M., & Lu, T. K. (2014). Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nature Biotechnology, 32(11), 1141–1145. View Publication High-throughput functional genomics in controlled lab environments allows for identification of previously unstudied metabolic pathways.4Thompson, M. G., Blake-Hedges, J. M., Cruz-Morales, P., Barajas, J. F., Curran, S. C., Eiben, C. B., Harris, N. C., Benites, V. T., Gin, J. W., Sharpless, W. A., Twigg, F. F., Skyrud, W., Krishna, R. N., Pereira, J. H., Baidoo, E. E. K., Petzold, C. J., Adams, P. D., Arkin, A. P., Deutschbauer, A. M., & Keasling, J. D. (2019). Massively Parallel Fitness Profiling Reveals Multiple Novel Enzymes in Pseudomonas putida Lysine Metabolism. MBio, 10(3), e02577-18. View Publication,5Wetmore, K. M., Price, M. N., Waters, R. J., Lamson, J. S., He, J., Hoover, C. A., Blow, M. J., Bristow, J., Butland, G., Arkin, A. P., & Deutschbauer, A. (2015). Rapid Quantification of Mutant Fitness in Diverse Bacteria by Sequencing Randomly Bar-Coded Transposons. MBio, 6(3), e00306-15. View Publication

Measuring population and nutrient dynamics in a microbiome has been the subject of extensive research efforts.6Cao, X., Hamilton, J. J., & Venturelli, O. S. (2019). Understanding and Engineering Distributed Biochemical Pathways in Microbial Communities. Biochemistry, 58(2), 94–107. View Publication Recently, sophisticated culture systems have emerged using 3D printing and microfluidics to systematically environmental conditions.7González, L. M., Mukhitov, N., & Voigt, C. A. (2020). Resilient living materials built by printing bacterial spores. Nature Chemical Biology, 16(2), 126–133. View Publication,8Kim, H. J., Huh, D., Hamilton, G., & Ingber, D. E. (2012). Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab on a Chip, 12(12), 2165. View Publication,9Zhalnina, K., Zengler, K., Newman, D., & Northen, T. R. (2018). Need for Laboratory Ecosystems To Unravel the Structures and Functions of Soil Microbial Communities Mediated by Chemistry. MBio, 9(4), e01175-18, /mbio/9/4/mBio.01175-18.atom. View Publication These systems can be used to observe nutrient and population dynamics, but tools to accurately mimic natural environments are still emerging. Furthermore, most bacteria remain uncultured,10Lloyd, K. G., Steen, A. D., Ladau, J., Yin, J., & Crosby, L. (2018). Phylogenetically Novel Uncultured Microbial Cells Dominate Earth Microbiomes. 3(5), 12. View Publication,11Rappé, M. S., & Giovannoni, S. J. (2003). The Uncultured Microbial Majority. Annual Review of Microbiology, 57(1), 369–394. View Publication particularly from non-human environmental samples. Some recent measurement successes include MaPS-seq (Metagenomic Plot Sampling by sequencing) which captures the spatial landscape of microbiota from “plots” of the microbiome host,12Sheth, R. U., Li, M., Jiang, W., Sims, P. A., Leong, K. W., & Wang, H. H. (2019). Spatial metagenomic characterization of microbial biogeography in the gut. Nature Biotechnology, 37(8), 877–883. View Publication methods for ratiometric gas reporting to detect gene expression and cell counts in soil microbes in a quantitative manner without having to physically alter the soil matrix,13Cheng, H.-Y., Masiello, C. A., Del Valle, I., Gao, X., Bennett, G. N., & Silberg, J. J. (2018). Ratiometric Gas Reporting: A Nondisruptive Approach To Monitor Gene Expression in Soils. ACS Synthetic Biology, 7(3), 903–911. View Publication and mass spectrometry methods to measure the chemical makeup of human skin, a complex system that includes interaction between the host, a microbiome, and the surrounding environment.14Bouslimani, A., Porto, C., Rath, C. M., Wang, M., Guo, Y., Gonzalez, A., Berg-Lyon, D., Ackermann, G., Moeller Christensen, G. J., Nakatsuji, T., Zhang, L., Borkowski, A. W., Meehan, M. J., Dorrestein, K., Gallo, R. L., Bandeira, N., Knight, R., Alexandrov, T., & Dorrestein, P. C. (2015). Molecular cartography of the human skin surface in 3D. Proceedings of the National Academy of Sciences, 112(17), E2120–E2129. View Publication Most methods, however, are destructive and there are limitations on what data can be captured from the same sample. Further, there is limited knowledge of how current model systems replicate variations that occur on short (sub-daily) timescales; and how technical errors/variations impact data produced from models.

Genomically recoded organisms can be engineered with effective growth control strategies.15Lajoie, M. J., Rovner, A. J., Goodman, D. B., Aerni, H.-R., Haimovich, A. D., Kuznetsov, G., Mercer, J. A., Wang, H. H., Carr, P. A., Mosberg, J. A., Rohland, N., Schultz, P. G., Jacobson, J. M., Rinehart, J., Church, G. M., & Isaacs, F. J. (2013). Genomically Recoded Organisms Expand Biological Functions. Science, 342(6156), 357–360. View Publication,16Ma, N. J., & Isaacs, F. J. (2016). Genomic Recoding Broadly Obstructs the Propagation of Horizontally Transferred Genetic Elements. Cell Systems, 3(2), 199–207. View Publication,17Rovner, A. J., Haimovich, A. D., Katz, S. R., Li, Z., Grome, M. W., Gassaway, B. M., Amiram, M., Patel, J. R., Gallagher, R. R., Rinehart, J., & Isaacs, F. J. (2015). Recoded organisms engineered to depend on synthetic amino acids. Nature, 518(7537), 89–93. View Publication Genome reduction approaches to date have largely focused on identifying minimal genomes for model organisms to improve bioproduction (e.g., Escherichia coli MDS42, Bacillus subtilis, Pseudomonas putida). Genome reduction techniques could be applied to shape the environmental niche of microbes and provide evolutionary robustness against complementation for populations deployed for human health, remediation, and plant growth.

Complete spatial and temporal control over individual species will enable more advanced pattern formation within a microbiome. Two-member bacterial populations that maintain the composition of the population (e.g., proportions of two bacterial species) using feedback control via cell-to-cell signaling molecules have been designed.18Dunlop, M. J., Keasling, J. D., & Mukhopadhyay, A. (2010). A model for improving microbial biofuel production using a synthetic feedback loop. Systems and Synthetic Biology, 4(2), 95–104. View Publication,19Hu, C. Y., & Murray, R. M. (2019). Design of a genetic layered feedback controller in synthetic biological circuitry [Preprint]. Synthetic Biology. View Publication,20McCardell, R. D., Pandey, A., & Murray, R. M. (2019). Control of density and composition in an engineered two-member bacterial community [Preprint]. Synthetic Biology. View Publication,21Ren, X., & Murray, R. M. (2018). Role of interaction network topology in controlling microbial population in consortia. 2018 IEEE Conference on Decision and Control (CDC), 2691–2697. View Publication Spatial patterning and Turing patterns have been created by single-species bacterial populations with synthetic circuits inside the individual cells.22Baumgart, L., Mather, W., & Hasty, J. (2017). Synchronized DNA cycling across a bacterial population. Nature Genetics, 49(8), 1282–1285. View Publication,23Bittihn, P., Din, M. O., Tsimring, L. S., & Hasty, J. (2018). Rational engineering of synthetic microbial systems: From single cells to consortia. Current Opinion in Microbiology, 45, 92–99. View Publication,24Dekas, A. E., Poretsky, R. S., & Orphan, V. J. (2009). Deep-Sea Archaea Fix and Share Nitrogen in Methane-Consuming Microbial Consortia. Science, 326(5951), 422–426. View Publication,25Karig, D., Martini, K. M., Lu, T., DeLateur, N. A., Goldenfeld, N., & Weiss, R. (2018). Stochastic Turing patterns in a synthetic bacterial population. Proceedings of the National Academy of Sciences, 115(26), 6572–6577. View Publication Escherichia coli have recently been engineered to form templated two-dimensional patterns using optogenetics, but this functionality has not been demonstrated in any other organism yet.26Moser, F., Tham, E., González, L. M., Lu, T. K., & Voigt, C. A. (2019). Light‐Controlled, High‐Resolution Patterning of Living Engineered Bacteria Onto Textiles, Ceramics, and Plastic. Advanced Functional Materials, 29(30), 1901788. View Publication More fine-tuned control must be developed for more ambitious applications, such as engineered living materials.27Nguyen, P. Q., Courchesne, N.-M. D., Duraj-Thatte, A., Praveschotinunt, P., & Joshi, N. S. (2018). Engineered Living Materials: Prospects and Challenges for Using Biological Systems to Direct the Assembly of Smart Materials. Advanced Materials, 30(19), 1704847. View Publication

Breakthrough Capabilities & Milestones

Develop tools to engineer the spatial characteristics of microbiomes.

Engineer a microbiome to change size in response to its environment.

Engineer spatially self-organizing communities (i.e., organization is templated rather than shaped by the environment).

Design microbiomes that alter their extracellular environment.

Footnotes

  1. Bikard, D., Euler, C. W., Jiang, W., Nussenzweig, P. M., Goldberg, G. W., Duportet, X., Fischetti, V. A., & Marraffini, L. A. (2014). Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nature Biotechnology, 32(11), 1146–1150. https://doi.org/10.1038/nbt.3043
  2. Caliando, B. J., & Voigt, C. A. (2015). Targeted DNA degradation using a CRISPR device stably carried in the host genome. Nature Communications, 6(1), 6989. https://doi.org/10.1038/ncomms7989
  3. Citorik, R. J., Mimee, M., & Lu, T. K. (2014). Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nature Biotechnology, 32(11), 1141–1145. https://doi.org/10.1038/nbt.3011
  4. Thompson, M. G., Blake-Hedges, J. M., Cruz-Morales, P., Barajas, J. F., Curran, S. C., Eiben, C. B., Harris, N. C., Benites, V. T., Gin, J. W., Sharpless, W. A., Twigg, F. F., Skyrud, W., Krishna, R. N., Pereira, J. H., Baidoo, E. E. K., Petzold, C. J., Adams, P. D., Arkin, A. P., Deutschbauer, A. M., & Keasling, J. D. (2019). Massively Parallel Fitness Profiling Reveals Multiple Novel Enzymes in Pseudomonas putida Lysine Metabolism. MBio, 10(3), e02577-18. https://doi.org/10.1128/mBio.02577-18
  5. Wetmore, K. M., Price, M. N., Waters, R. J., Lamson, J. S., He, J., Hoover, C. A., Blow, M. J., Bristow, J., Butland, G., Arkin, A. P., & Deutschbauer, A. (2015). Rapid Quantification of Mutant Fitness in Diverse Bacteria by Sequencing Randomly Bar-Coded Transposons. MBio, 6(3), e00306-15. https://doi.org/10.1128/mBio.00306-15
  6. Cao, X., Hamilton, J. J., & Venturelli, O. S. (2019). Understanding and Engineering Distributed Biochemical Pathways in Microbial Communities. Biochemistry, 58(2), 94–107. https://doi.org/10.1021/acs.biochem.8b01006
  7. González, L. M., Mukhitov, N., & Voigt, C. A. (2020). Resilient living materials built by printing bacterial spores. Nature Chemical Biology, 16(2), 126–133. https://doi.org/10.1038/s41589-019-0412-5
  8. Kim, H. J., Huh, D., Hamilton, G., & Ingber, D. E. (2012). Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab on a Chip, 12(12), 2165. https://doi.org/10.1039/c2lc40074j
  9. Zhalnina, K., Zengler, K., Newman, D., & Northen, T. R. (2018). Need for Laboratory Ecosystems To Unravel the Structures and Functions of Soil Microbial Communities Mediated by Chemistry. MBio, 9(4), e01175-18, /mbio/9/4/mBio.01175-18.atom. https://doi.org/10.1128/mBio.01175-18
  10. Lloyd, K. G., Steen, A. D., Ladau, J., Yin, J., & Crosby, L. (2018). Phylogenetically Novel Uncultured Microbial Cells Dominate Earth Microbiomes. 3(5), 12. https://doi.org/10.1128/mSystems.00055-18
  11. Rappé, M. S., & Giovannoni, S. J. (2003). The Uncultured Microbial Majority. Annual Review of Microbiology, 57(1), 369–394. https://doi.org/10.1146/annurev.micro.57.030502.090759
  12. Sheth, R. U., Li, M., Jiang, W., Sims, P. A., Leong, K. W., & Wang, H. H. (2019). Spatial metagenomic characterization of microbial biogeography in the gut. Nature Biotechnology, 37(8), 877–883. https://doi.org/10.1038/s41587-019-0183-2
  13. Cheng, H.-Y., Masiello, C. A., Del Valle, I., Gao, X., Bennett, G. N., & Silberg, J. J. (2018). Ratiometric Gas Reporting: A Nondisruptive Approach To Monitor Gene Expression in Soils. ACS Synthetic Biology, 7(3), 903–911. https://doi.org/10.1021/acssynbio.7b00405
  14. Bouslimani, A., Porto, C., Rath, C. M., Wang, M., Guo, Y., Gonzalez, A., Berg-Lyon, D., Ackermann, G., Moeller Christensen, G. J., Nakatsuji, T., Zhang, L., Borkowski, A. W., Meehan, M. J., Dorrestein, K., Gallo, R. L., Bandeira, N., Knight, R., Alexandrov, T., & Dorrestein, P. C. (2015). Molecular cartography of the human skin surface in 3D. Proceedings of the National Academy of Sciences, 112(17), E2120–E2129. https://doi.org/10.1073/pnas.1424409112
  15. Lajoie, M. J., Rovner, A. J., Goodman, D. B., Aerni, H.-R., Haimovich, A. D., Kuznetsov, G., Mercer, J. A., Wang, H. H., Carr, P. A., Mosberg, J. A., Rohland, N., Schultz, P. G., Jacobson, J. M., Rinehart, J., Church, G. M., & Isaacs, F. J. (2013). Genomically Recoded Organisms Expand Biological Functions. Science, 342(6156), 357–360. https://doi.org/10.1126/science.1241459
  16. Ma, N. J., & Isaacs, F. J. (2016). Genomic Recoding Broadly Obstructs the Propagation of Horizontally Transferred Genetic Elements. Cell Systems, 3(2), 199–207. https://doi.org/10.1016/j.cels.2016.06.009
  17. Rovner, A. J., Haimovich, A. D., Katz, S. R., Li, Z., Grome, M. W., Gassaway, B. M., Amiram, M., Patel, J. R., Gallagher, R. R., Rinehart, J., & Isaacs, F. J. (2015). Recoded organisms engineered to depend on synthetic amino acids. Nature, 518(7537), 89–93. https://doi.org/10.1038/nature14095
  18. Dunlop, M. J., Keasling, J. D., & Mukhopadhyay, A. (2010). A model for improving microbial biofuel production using a synthetic feedback loop. Systems and Synthetic Biology, 4(2), 95–104. https://doi.org/10.1007/s11693-010-9052-5
  19. Hu, C. Y., & Murray, R. M. (2019). Design of a genetic layered feedback controller in synthetic biological circuitry [Preprint]. Synthetic Biology. https://doi.org/10.1101/647057
  20. McCardell, R. D., Pandey, A., & Murray, R. M. (2019). Control of density and composition in an engineered two-member bacterial community [Preprint]. Synthetic Biology. https://doi.org/10.1101/632174
  21. Ren, X., & Murray, R. M. (2018). Role of interaction network topology in controlling microbial population in consortia. 2018 IEEE Conference on Decision and Control (CDC), 2691–2697. https://doi.org/10.1109/CDC.2018.8619704
  22. Baumgart, L., Mather, W., & Hasty, J. (2017). Synchronized DNA cycling across a bacterial population. Nature Genetics, 49(8), 1282–1285. https://doi.org/10.1038/ng.3915
  23. Bittihn, P., Din, M. O., Tsimring, L. S., & Hasty, J. (2018). Rational engineering of synthetic microbial systems: From single cells to consortia. Current Opinion in Microbiology, 45, 92–99. https://doi.org/10.1016/j.mib.2018.02.009
  24. Dekas, A. E., Poretsky, R. S., & Orphan, V. J. (2009). Deep-Sea Archaea Fix and Share Nitrogen in Methane-Consuming Microbial Consortia. Science, 326(5951), 422–426. https://doi.org/10.1126/science.1178223
  25. Karig, D., Martini, K. M., Lu, T., DeLateur, N. A., Goldenfeld, N., & Weiss, R. (2018). Stochastic Turing patterns in a synthetic bacterial population. Proceedings of the National Academy of Sciences, 115(26), 6572–6577. https://doi.org/10.1073/pnas.1720770115
  26. Moser, F., Tham, E., González, L. M., Lu, T. K., & Voigt, C. A. (2019). Light‐Controlled, High‐Resolution Patterning of Living Engineered Bacteria Onto Textiles, Ceramics, and Plastic. Advanced Functional Materials, 29(30), 1901788. https://doi.org/10.1002/adfm.201901788
  27. Nguyen, P. Q., Courchesne, N.-M. D., Duraj-Thatte, A., Praveschotinunt, P., & Joshi, N. S. (2018). Engineered Living Materials: Prospects and Challenges for Using Biological Systems to Direct the Assembly of Smart Materials. Advanced Materials, 30(19), 1704847. https://doi.org/10.1002/adma.201704847
  28. Brown, C. T., Olm, M. R., Thomas, B. C., & Banfield, J. F. (2016). Measurement of bacterial replication rates in microbial communities. Nature Biotechnology, 34(12), 1256–1263. https://doi.org/10.1038/nbt.3704
  29. Morris, J. J., Johnson, Z. I., Szul, M. J., Keller, M., & Zinser, E. R. (2011). Dependence of the Cyanobacterium Prochlorococcus on Hydrogen Peroxide Scavenging Microbes for Growth at the Ocean’s Surface. PLoS ONE, 6(2), e16805. https://doi.org/10.1371/journal.pone.0016805
  30. Avello, M., Davis, K. P., & Grossman, A. D. (2019). Identification, characterization and benefits of an exclusion system in an integrative and conjugative element of Bacillus subtilis. Molecular Microbiology, 112(4), 1066–1082. https://doi.org/10.1111/mmi.14359
  31. Lau, Y. H., Stirling, F., Kuo, J., Karrenbelt, M. A. P., Chan, Y. A., Riesselman, A., Horton, C. A., Schäfer, E., Lips, D., Weinstock, M. T., Gibson, D. G., Way, J. C., & Silver, P. A. (2017). Large-scale recoding of a bacterial genome by iterative recombineering of synthetic DNA. Nucleic Acids Research, 45(11), 6971–6980. https://doi.org/10.1093/nar/gkx415
  32. Karig, D., Martini, K. M., Lu, T., DeLateur, N. A., Goldenfeld, N., & Weiss, R. (2018). Stochastic Turing patterns in a synthetic bacterial population. Proceedings of the National Academy of Sciences, 115(26), 6572–6577. https://doi.org/10.1073/pnas.1720770115
  33. Luo, N., Wang, S., & You, L. (2019). Synthetic Pattern Formation. Biochemistry, 58(11), 1478–1483. https://doi.org/10.1021/acs.biochem.8b01242
Last updated: October 1, 2020 Back