Microbiome Engineering
Functional Biodiversity Goal:

Engineer microbiomes robust to evolutionary and environmental pressures.

Current State-of-the-Art

Designing microbiomes that resist natural ecological and evolutionary forces will require a deeper understanding of both the dynamics within a microbiome and how environmental factors impact its growth and function. Lab grown microbiomes are still in their very early stages of development, limiting our understanding of how evolutionary and environmental pressures drive microbiome composition over time.1Koskella, B., Hall, L. J., & Metcalf, C. J. E. (2017). The microbiome beyond the horizon of ecological and evolutionary theory. Nature Ecology & Evolution, 1(11), 1606–1615. View Publication However, some advances in microbiome engineering have been made that will be useful for addressing known challenges.

Balancing the growth rates of microbial species within a microbiome has been challenging,2McCardell, R. D., Pandey, A., & Murray, R. M. (2019). Control of density and composition in an engineered two-member bacterial community [Preprint]. Synthetic Biology. View Publication,3Shou, W., Ram, S., & Vilar, J. M. G. (2007). Synthetic cooperation in engineered yeast populations. Proceedings of the National Academy of Sciences, 104(6), 1877–1882. View Publication but differences have been mitigated by implementing feedback controllers on growth using synthetic genetic circuits.4Ziesack, M., Gibson, T., Oliver, J. K. W., Shumaker, A. M., Hsu, B. B., Riglar, D. T., Giessen, T. W., DiBenedetto, N. V., Bry, L., Way, J. C., Silver, P. A., & Gerber, G. K. (2019). Engineered Interspecies Amino Acid Cross-Feeding Increases Population Evenness in a Synthetic Bacterial Consortium. mSystems, 4(4), 15. View Publication Predictive methods and computational models that can capture the landscape of fitness across various initial conditions and environmental perturbations are under development.5Gutiérrez, M., Gregorio-Godoy, P., Pérez del Pulgar, G., Muñoz, L. E., Sáez, S., & Rodríguez-Patón, A. (2017). A New Improved and Extended Version of the Multicell Bacterial Simulator gro. ACS Synthetic Biology, 6(8), 1496–1508. View Publication,6Matyjaszkiewicz, A., Fiore, G., Annunziata, F., Grierson, C. S., Savery, N. J., Marucci, L., & di Bernardo, M. (2017). BSim 2.0: An Advanced Agent-Based Cell Simulator. ACS Synthetic Biology, 6(10), 1969–1972. View Publication A guild may also need to resist dispersion to maintain its function, which requires the ability to adhere cells into defined morphologies and patterns, as described by this cell-to-cell adhesion toolbox.7Glass, D. S., & Riedel-Kruse, I. H. (2018). A Synthetic Bacterial Cell-Cell Adhesion Toolbox for Programming Multicellular Morphologies and Patterns. Cell, 174(3), 649-658.e16. View Publication Some progress has been made to engineer microbial social interactions,8Kong, W., Meldgin, D. R., Collins, J. J., & Lu, T. (2018). Designing microbial consortia with defined social interactions. Nature Chemical Biology, 14(8), 821–829. View Publication but additional progress will be needed to engineer interactions between kingdoms, which will be key for resisting evolutionary pressures in microbiomes.

Breakthrough Capabilities & Milestones

Engineer robust and stable microbiomes that are resilient to evolutionary and environmental stress (e.g., environmental variations, dispersion forces, nutrient deprivation).

Footnotes

  1. Koskella, B., Hall, L. J., & Metcalf, C. J. E. (2017). The microbiome beyond the horizon of ecological and evolutionary theory. Nature Ecology & Evolution, 1(11), 1606–1615. https://doi.org/10.1038/s41559-017-0340-2
  2. McCardell, R. D., Pandey, A., & Murray, R. M. (2019). Control of density and composition in an engineered two-member bacterial community [Preprint]. Synthetic Biology. https://doi.org/10.1101/632174
  3. Shou, W., Ram, S., & Vilar, J. M. G. (2007). Synthetic cooperation in engineered yeast populations. Proceedings of the National Academy of Sciences, 104(6), 1877–1882. https://doi.org/10.1073/pnas.0610575104
  4. Ziesack, M., Gibson, T., Oliver, J. K. W., Shumaker, A. M., Hsu, B. B., Riglar, D. T., Giessen, T. W., DiBenedetto, N. V., Bry, L., Way, J. C., Silver, P. A., & Gerber, G. K. (2019). Engineered Interspecies Amino Acid Cross-Feeding Increases Population Evenness in a Synthetic Bacterial Consortium. mSystems, 4(4), 15. https://doi.org/10.1128/mSystems.00352-19
  5. Gutiérrez, M., Gregorio-Godoy, P., Pérez del Pulgar, G., Muñoz, L. E., Sáez, S., & Rodríguez-Patón, A. (2017). A New Improved and Extended Version of the Multicell Bacterial Simulator gro. ACS Synthetic Biology, 6(8), 1496–1508. https://doi.org/10.1021/acssynbio.7b00003
  6. Matyjaszkiewicz, A., Fiore, G., Annunziata, F., Grierson, C. S., Savery, N. J., Marucci, L., & di Bernardo, M. (2017). BSim 2.0: An Advanced Agent-Based Cell Simulator. ACS Synthetic Biology, 6(10), 1969–1972. https://doi.org/10.1021/acssynbio.7b00121
  7. Glass, D. S., & Riedel-Kruse, I. H. (2018). A Synthetic Bacterial Cell-Cell Adhesion Toolbox for Programming Multicellular Morphologies and Patterns. Cell, 174(3), 649-658.e16. https://doi.org/10.1016/j.cell.2018.06.041
  8. Kong, W., Meldgin, D. R., Collins, J. J., & Lu, T. (2018). Designing microbial consortia with defined social interactions. Nature Chemical Biology, 14(8), 821–829. https://doi.org/10.1038/s41589-018-0091-7
  9. Hall, A. R., Ashby, B., Bascompte, J., & King, K. C. (2020). Measuring Coevolutionary Dynamics in Species-Rich Communities. Trends in Ecology & Evolution, 35(6), 539–550. https://doi.org/10.1016/j.tree.2020.02.002
  10. Lau, Y. H., Stirling, F., Kuo, J., Karrenbelt, M. A. P., Chan, Y. A., Riesselman, A., Horton, C. A., Schäfer, E., Lips, D., Weinstock, M. T., Gibson, D. G., Way, J. C., & Silver, P. A. (2017). Large-scale recoding of a bacterial genome by iterative recombineering of synthetic DNA. Nucleic Acids Research, 45(11), 6971–6980. https://doi.org/10.1093/nar/gkx415
  11. Røder, H. L., Sørensen, S. J., & Burmølle, M. (2016). Studying Bacterial Multispecies Biofilms: Where to Start? Trends in Microbiology, 24(6), 503–513. https://doi.org/10.1016/j.tim.2016.02.01
  12. Ceroni, F., Boo, A., Furini, S., Gorochowski, T. E., Borkowski, O., Ladak, Y. N., Awan, A. R., Gilbert, C., Stan, G.-B., & Ellis, T. (2018). Burden-driven feedback control of gene expression. Nature Methods, 15(5), 387–393. https://doi.org/10.1038/nmeth.4635
Last updated: October 1, 2020 Back