Engineering Biology for Climate & Sustainability
Mitigation of Environmental Pollution Goal:

Mitigate pollutants from human-generated waste streams.

More detail about upcycling chemicals and materials can be found in Materials Production & Industrial Processes.

Current State-of-the-Art

Efficient biodegradation could prove especially useful for breaking down hydrocarbons (e.g., plastics and oils) and removing harmful chemicals from human-generated waste streams, before they reach the larger environment. For water treatment, in particular, biobased systems have been developed to capture fecal coliforms,1Li, X., Yang, C., Zeng, G., Wu, S., Lin, Y., Zhou, Q., Lou, W., Du, C., Nie, L., & Zhong, Y. (2020). Nutrient removal from swine wastewater with growing microalgae at various zinc concentrations. Algal Research, 46, 101804. View Publication. degrade nutrient runoff from agriculture and aquaculture (e.g., fish waste and feed),2Coppola, D., Lauritano, C., Palma Esposito, F., Riccio, G., Rizzo, C., & de Pascale, D. (2021). Fish Waste: From Problem to Valuable Resource. Marine Drugs, 19(2), 116. View Publication.[\mfn] reduce antibiotics and insecticide contamination,2Ferrando, L., & Matamoros, V. (2020). Attenuation of nitrates, antibiotics and pesticides from groundwater using immobilised microalgae-based systems. Science of The Total Environment, 703, 134740. View Publication. and clean up fluorinated compounds.3Moreira, I. S., Amorim, C. L., Murphy, C. D., & Castro, P. M. L. (2018). Strategies for Biodegradation of Fluorinated Compounds. In R. Prasad & E. Aranda (Eds.), Approaches in Bioremediation: The New Era of Environmental Microbiology and Nanobiotechnology (pp. 239–280). Springer International Publishing. View Publication. Future advances in biodegradation could enable higher efficiency water purification, reclamation, and even desalination (such as occurs with mangrove trees, see Wang et al., 2020b4Wang, Y., Lee, J., Werber, J. R., & Elimelech, M. (2020b). Capillary-driven desalination in a synthetic mangrove. Science Advances, 6(8), eaax5253. View Publication.), where halophilic bacteria could be incorporated into the desalination process to prevent biofouling and reduce chemical use. While some non-model organisms can grow on and process pollutants, more research is needed to identify novel organisms that can handle harsh and polluted environments.5Sysoev, M., Grötzinger, S. W., Renn, D., Eppinger, J., Rueping, M., & Karan, R. (2021). Bioprospecting of Novel Extremozymes From Prokaryotes—The Advent of Culture-Independent Methods. Frontiers in Microbiology, 12, 196. View Publication., 6Yun, S. H., Choi, C.-W., Lee, S.-Y., Park, E. C., & Kim, S. I. (2016). A Proteomics Approach for the Identification of Novel Proteins in Extremophiles. In P. H. Rampelotto (Ed.), Biotechnology of Extremophiles: Advances and Challenges (pp. 303–319). Springer International Publishing. View Publication. In addition to removing pollutants from waste streams, engineering biology can take the process further and upcycle pollutants by converting them into useful products.7Cornwall. (2021). Could plastic-eating microbes take a bite out of the recycling problem? Science. View Publication., 8Lad, B. C., Coleman, S. M., & Alper, H. S. (2022). Microbial valorization of underutilized and nonconventional waste streams. Journal of Industrial Microbiology and Biotechnology, 49(2), kuab056. View Publication.

Breakthrough Capabilities & Milestones

Enable the bioremediation of contaminants from municipal wastewater.

*Do, C. V. T., Pham, M. H. T., Pham, T. Y. T., Dinh, C. T., Bui, T. U. T., Tran, T. D., & Nguyen, V. T. (2022). Microalgae and bioremediation of domestic wastewater. Current Opinion in Green and Sustainable Chemistry, 34, 100595. https://doi.org/10.1016/j.cogsc.2022.100595

**Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., & Fava, F. (2015). Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnology, 32(1), 147–156. https://doi.org/10.1016/j.nbt.2014.01.001

Enable the bioremediation of pollutants from agriculture and aquaculture.

For biotechnologies for reducing agricultural runoff (through more effective biofertilizers and more efficient crop uptake of nutrients), please see the Food & Agriculture theme.

Enable the bioremediation of chemical waste from industrial effluent.

Footnotes

  1. Li, X., Yang, C., Zeng, G., Wu, S., Lin, Y., Zhou, Q., Lou, W., Du, C., Nie, L., & Zhong, Y. (2020). Nutrient removal from swine wastewater with growing microalgae at various zinc concentrations. Algal Research, 46, 101804. https://doi.org/10.1016/j.algal.2020.101804
  2. Coppola, D., Lauritano, C., Palma Esposito, F., Riccio, G., Rizzo, C., & de Pascale, D. (2021). Fish Waste: From Problem to Valuable Resource. Marine Drugs, 19(2), 116. https://doi.org/10.3390/md19020116
  3. Ferrando, L., & Matamoros, V. (2020). Attenuation of nitrates, antibiotics and pesticides from groundwater using immobilised microalgae-based systems. Science of The Total Environment, 703, 134740. https://doi.org/10.1016/j.scitotenv.2019.134740
  4. Moreira, I. S., Amorim, C. L., Murphy, C. D., & Castro, P. M. L. (2018). Strategies for Biodegradation of Fluorinated Compounds. In R. Prasad & E. Aranda (Eds.), Approaches in Bioremediation: The New Era of Environmental Microbiology and Nanobiotechnology (pp. 239–280). Springer International Publishing. https://doi.org/10.1007/978-3-030-02369-0_11
  5. Wang, Y., Lee, J., Werber, J. R., & Elimelech, M. (2020b). Capillary-driven desalination in a synthetic mangrove. Science Advances, 6(8), eaax5253. https://doi.org/10.1126/sciadv.aax5253
  6. Sysoev, M., Grötzinger, S. W., Renn, D., Eppinger, J., Rueping, M., & Karan, R. (2021). Bioprospecting of Novel Extremozymes From Prokaryotes—The Advent of Culture-Independent Methods. Frontiers in Microbiology, 12, 196. https://doi.org/10.3389/fmicb.2021.630013
  7. Yun, S. H., Choi, C.-W., Lee, S.-Y., Park, E. C., & Kim, S. I. (2016). A Proteomics Approach for the Identification of Novel Proteins in Extremophiles. In P. H. Rampelotto (Ed.), Biotechnology of Extremophiles: Advances and Challenges (pp. 303–319). Springer International Publishing. https://doi.org/10.1007/978-3-319-13521-2_10
  8. Cornwall. (2021). Could plastic-eating microbes take a bite out of the recycling problem? Science. https://www.science.org/content/article/could-plastic-eating-microbes-take-bite-out-recycling-problem
  9. Lad, B. C., Coleman, S. M., & Alper, H. S. (2022). Microbial valorization of underutilized and nonconventional waste streams. Journal of Industrial Microbiology and Biotechnology, 49(2), kuab056. https://doi.org/10.1093/jimb/kuab056
  10. Aggarwal, C., Singh, D., Soni, H., & Pal, A. (2021). Heterotrophic Cultivation of Microalgae in Wastewater. In A. Kumar, A. Pal, S. S. Kachhwaha, & P. K. Jain (Eds.), Recent Advances in Mechanical Engineering (pp. 493–506). Springer Nature. https://doi.org/10.1007/978-981-15-9678-0_43
  11. Gao, F., Yang, Z.-Y., Zhao, Q.-L., Chen, D.-Z., Li, C., Liu, M., Yang, J.-S., Liu, J.-Z., Ge, Y.-M., & Chen, J.-M. (2021). Mixotrophic cultivation of microalgae coupled with anaerobic hydrolysis for sustainable treatment of municipal wastewater in a hybrid system of anaerobic membrane bioreactor and membrane photobioreactor. Bioresource Technology, 337, 125457. https://doi.org/10.1016/j.biortech.2021.125457
  12. Chen, Y.-L., Yu, C.-P., Lee, T.-H., Goh, K.-S., Chu, K.-H., Wang, P.-H., Ismail, W., Shih, C.-J., & Chiang, Y.-R. (2017). Biochemical Mechanisms and Catabolic Enzymes Involved in Bacterial Estrogen Degradation Pathways. Cell Chemical Biology, 24(6), 712-724.e7. https://doi.org/10.1016/j.chembiol.2017.05.012
  13. Ariste, A. F., & Cabana, H. (2020). Challenges in Applying Cross-Linked Laccase Aggregates in Bioremediation of Emerging Contaminants from Municipal Wastewater. In D. Schlosser (Ed.), Laccases in Bioremediation and Waste Valorisation (pp. 147–171). Springer International Publishing. https://doi.org/10.1007/978-3-030-47906-0_6
  14. Rojo, F. (2009). Degradation of alkanes by bacteria. Environmental Microbiology, 11(10), 2477–2490. https://doi.org/10.1111/j.1462-2920.2009.01948.x
  15. Kumar Singh, N., Pandey, S., Singh, R. P., Muzamil Gani, K., Yadav, M., Thanki, A., & Kumar, T. (2020). 11—Bioreactor and bioprocess technology for bioremediation of domestic and municipal wastewater. In V. C. Pandey & V. Singh (Eds.), Bioremediation of Pollutants (pp. 251–273). Elsevier. https://doi.org/10.1016/B978-0-12-819025-8.00011-9
  16. Hoffmann, T. D., Paine, K., & Gebhard, S. (2021). Genetic optimisation of bacteria-induced calcite precipitation in Bacillus subtilis. Microbial Cell Factories, 20(1), 214. https://doi.org/10.1186/s12934-021-01704-1
  17. Hungate, B. A., Mau, R. L., Schwartz, E., Caporaso, J. G., Dijkstra, P., van Gestel, N., Koch, B. J., Liu, C. M., McHugh, T. A., Marks, J. C., Morrissey, E. M., & Price, L. B. (2015). Quantitative Microbial Ecology through Stable Isotope Probing. Applied and Environmental Microbiology, 81(21), 7570–7581. https://doi.org/10.1128/AEM.02280-15
  18. Couradeau, E., Sasse, J., Goudeau, D., Nath, N., Hazen, T. C., Bowen, B. P., Chakraborty, R., Malmstrom, R. R., & Northen, T. R. (2019). Probing the active fraction of soil microbiomes using BONCAT-FACS. Nature Communications, 10(1), 2770. https://doi.org/10.1038/s41467-019-10542-0
  19. Wang, Y., Yan, Y., Thompson, K. N., Bae, S., Accorsi, E. K., Zhang, Y., Shen, J., Vlamakis, H., Hartmann, E. M., & Huttenhower, C. (2021). Whole microbial community viability is not quantitatively reflected by propidium monoazide sequencing approach. Microbiome, 9(1), 17. https://doi.org/10.1186/s40168-020-00961-3
  20. Rubin, B. E., Diamond, S., Cress, B. F., Crits-Christoph, A., Lou, Y. C., Borges, A. L., Shivram, H., He, C., Xu, M., Zhou, Z., Smith, S. J., Rovinsky, R., Smock, D. C. J., Tang, K., Owens, T. K., Krishnappa, N., Sachdeva, R., Barrangou, R., Deutschbauer, A. M., … Doudna, J. A. (2022). Species- and site-specific genome editing in complex bacterial communities. Nature Microbiology, 7(1), 34–47. https://doi.org/10.1038/s41564-021-01014-7
  21. Alves, N. J., Moore, M., Johnson, B. J., Dean, S. N., Turner, K. B., Medintz, I. L., & Walper, S. A. (2018). Environmental Decontamination of a Chemical Warfare Simulant Utilizing a Membrane Vesicle-Encapsulated Phosphotriesterase. ACS Applied Materials & Interfaces, 10(18), 15712–15719. https://doi.org/10.1021/acsami.8b02717
Last updated: September 19, 2022 Back