Engineering Biology for Climate & Sustainability
Biosequestration of Greenhouse Gases Goal:

At-scale capture, storage, and utilization of greenhouse gasses (GHGs) by engineered organisms.

Current State-of-the-Art

Removal of greenhouse gases – including carbon oxides, methane, nitrous oxide, and fluorinated gases – from the environment is one of the primary components to mitigating climate change. Using autotrophic organisms to capture GHGs, we can leverage the self-replication of biological organisms as a mechanism for continual capture, resulting in negative carbon emissions and a cleaner environment world wide. Biology is uniquely suited to address GHG capture, storage and utilization. It is likely that the first complex molecules to emerge on Earth were all synthesized from CO2. 1Russell, M. J., & Martin, W. (2004). The rocky roots of the acetyl-CoA pathway. Trends in Biochemical Sciences, 29(7), 358–363. View Publication. and today several CO2 fixation routes are known.2Köpke, M. (2022). Redesigning CO2 fixation. Nature Synthesis, 1(8), 584–585. View Publication., 3Berg, I. A. (2011). Ecological Aspects of the Distribution of Different Autotrophic CO2 Fixation Pathways. Applied and Environmental Microbiology, 77(6), 1925–1936. View Publication., 4Bar-Even, A., Noor, E., & Milo, R. (2012). A survey of carbon fixation pathways through a quantitative lens. Journal of Experimental Botany, 63(6), 2325–2342. View Publication.

Photoautotrophs (plants, algae, cyanobacteria) absorb sunlight and CO2 to make biomass. Engineering biology could increase the efficiency of this process and create more capacity for CO2 drawdown by using genetic editing tools to optimize key complexes, enzymes, and pathways involved in photosynthesis and carbon fixation. Advances in engineering biology, especially the emergence and widespread use of CRISPR, have led to a series of recent successes in engineering plants, though major research questions and challenges still remain.5Zhang, Y., Pribil, M., Palmgren, M., & Gao, C. (2020). A CRISPR way for accelerating improvement of food crops. Nature Food, 1(4), 200–205. View Publication. Extensive research efforts have been directed towards engineering RuBisCo – the enzyme responsible for catalyzing the first step of CO2 uptake in carbon fixation and the most abundant protein on Earth turning over an approximate 400 gigatons of CO2 per year – as a key target for improving plant photosynthesis efficiency to improve its catalytic efficiency.6Erb, T. J., & Zarzycki, J. (2018). A short history of RubisCO: The rise and fall (?) of Nature’s predominant CO2 fixing enzyme. Current Opinion in Biotechnology, 49, 100–107. View Publication. In addition to improving enzymatic pathways for CO2 conversion, engineering photosynthetic organisms (especially plants) to more efficiently capture light and tolerate dynamic lighting conditions will help to achieve higher rates of CO2 conversion.7Kirst, H., Gabilly, S. T., Niyogi, K. K., Lemaux, P. G., & Melis, A. (2017). Photosynthetic antenna engineering to improve crop yields. Planta, 245(5), 1009–1020. View Publication. In addition to plants, photosynthetic organisms like cyanobacteria and algae are also valuable research targets for carbon capture. Importantly, cyanobacteria and algae contain carbon concentrating mechanisms (CCM) that make them more efficient at photosynthesis and carbon fixation than plants, and research is underway to embed CCMs into plants and other model organisms for carbon capture.8Cai, T., Sun, H., Qiao, J., Zhu, L., Zhang, F., Zhang, J., Tang, Z., Wei, X., Yang, J., Yuan, Q., Wang, W., Yang, X., Chu, H., Wang, Q., You, C., Ma, H., Sun, Y., Li, Y., Li, C., … Ma, Y. (2021). Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 373(6562), 1523–1527. View Publication.

In addition to these photoautotrophs that require light as a source of electrons, there is a wide range of chemoautotrophs capable of utilizing carbon oxides or methane.9Pavan, M., Reinmets, K., Garg, S., Mueller, A. P., Marcellin, E., Köpke, M., & Valgepea, K. (2022). Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy. Metabolic Engineering, 71, 117–141. View Publication., 10Dürre, P., & Eikmanns, B. J. (2015). C1-carbon sources for chemical and fuel production by microbial gas fermentation. Current Opinion in Biotechnology, 35, 63–72. View Publication. Efforts are underway to develop tools to efficiently engineer chemoautotrophic organisms including acetogens, hydrogenogens, or methanotrophs or even transfer into model organisms like E.coli or yeast.11Bennett, R. K., Dzvova, N., Dillon, M., Jones, S., Hestmark, K., Zhu, B., Helman, N., Greenfield, D., Clarke, E., & Papoutsakis, E. T. (2021). Expression of soluble methane monooxygenase in Escherichia coli enables methane conversion (p. 2021.08.05.455234). View Publication., 12Gleizer, S., Ben-Nissan, R., Bar-On, Y. M., Antonovsky, N., Noor, E., Zohar, Y., Jona, G., Krieger, E., Shamshoum, M., Bar-Even, A., & Milo, R. (2019). Conversion of Escherichia coli to Generate All Biomass Carbon from CO2. Cell, 179(6), 1255-1263.e12. View Publication. This includes enhancing the seven known CO2 fixation pathways with new-to-nature reactions or designing synthetic or de novo CO2 fixation pathways. Researchers have aimed to circumvent the challenges posed by endogenous carbon fixation by focusing on designing synthetic metabolic pathways13Bar-Even, A., Noor, E., Lewis, N. E., & Milo, R. (2010). Design and analysis of synthetic carbon fixation pathways. Proceedings of the National Academy of Sciences, 107(19), 8889–8894. View Publication., 14Scheffen, M., Marchal, D. G., Beneyton, T., Schuller, S. K., Klose, M., Diehl, C., Lehmann, J., Pfister, P., Carrillo, M., He, H., Aslan, S., Cortina, N. S., Claus, P., Bollschweiler, D., Baret, J.-C., Schuller, J. M., Zarzycki, J., Bar-Even, A., & Erb, T. J. (2021). A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation. Nature Catalysis, 4(2), 105–115. View Publication. and identifying key enzymes other than RuBisCo that are critical for carbon fixation, such as carboxylation via 6-phosphogluconate dehydrogenase.15Flamholz, A. I., Prywes, N., Moran, U., Davidi, D., Bar-On, Y. M., Oltrogge, L. M., Alves, R., Savage, D., & Milo, R. (2019). Revisiting Trade-offs between Rubisco Kinetic Parameters. Biochemistry, 58(31), 3365–3376. View Publication., 16Bar-Even, A. (2018). Daring metabolic designs for enhanced plant carbon fixation. Plant Science, 273, 71–83. View Publication. There is also work underway to rewire CO2 fixation pathways17Wu, C., Lo, J., Urban, C., Gao, X., Yang, B., Humphreys, J., Shinde, S., Wang, X., Chou, K. J., Maness, P., Tsesmetzis, N., Parker, D., & Xiong, W. (2022). Acetyl-CoA synthesis through a bicyclic carbon-fixing pathway in gas-fermenting bacteria. Nature Synthesis, 1(8), 615–625. View Publication., 18Köpke, M. (2022). Redesigning CO2 fixation. Nature Synthesis, 1(8), 584–585. View Publication. or transplant engineered fixation pathways into (new) microbial chassis and engineering in vitro CO2 fixation in cell-free systems.19Scheffen, M., Marchal, D. G., Beneyton, T., Schuller, S. K., Klose, M., Diehl, C., Lehmann, J., Pfister, P., Carrillo, M., He, H., Aslan, S., Cortina, N. S., Claus, P., Bollschweiler, D., Baret, J.-C., Schuller, J. M., Zarzycki, J., Bar-Even, A., & Erb, T. J. (2021). A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation. Nature Catalysis, 4(2), 105–115. View Publication. Key challenges include that there are still gaps in our understanding of CO2 fixation pathways20Öppinger, C., Kremp, F., & Müller, V. (2022). Is reduced ferredoxin the physiological electron donor for MetVF-type methylenetetrahydrofolate reductases in acetogenesis? A hypothesis. International Microbiology, 25(1), 75–88. View Publication., 21Kremp, F., Roth, J., & Müller, V. (2022). A Third Way of Energy Conservation in Acetogenic Bacteria. Microbiology Spectrum, 0(0), e01385-22. View Publication., 22Köpke, M. (2022). Redesigning CO2 fixation. Nature Synthesis, 1(8), 584–585. View Publication. and many pathways such as the Wood-Ljundahl pathway which is considered to be the most energy efficient CO2 fixation pathway23Bar-Even, A., Noor, E., & Milo, R. (2012). A survey of carbon fixation pathways through a quantitative lens. Journal of Experimental Botany, 63(6), 2325–2342. View Publication., 24Claassens, N. J., Cotton, C. A. R., Kopljar, D., & Bar-Even, A. (2019). Making quantitative sense of electromicrobial production. Nature Catalysis, 2(5), 437–447. View Publication., 25Fast, A. G., & Papoutsakis, E. T. (2012). Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Current Opinion in Chemical Engineering, 1(4), 380–395. View Publication. are complex and require a network of hundreds of genes involved for chemoautotrophic growth and associated energy conservation.26Kaster, A.-K., Goenrich, M., Seedorf, H., Liesegang, H., Wollherr, A., Gottschalk, G., & Thauer, R. K. (2011). More Than 200 Genes Required for Methane Formation from H2 and CO2 and Energy Conservation Are Present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. Archaea, 2011, e973848. View Publication.

Most chemoautotrophs convert carbon oxides or methane into cellular biomass or simple molecules such as acetate (which are intermediates for other organisms in the global carbon cycle).27Drake, H. L., Küsel, K., & Matthies, C. (2006). Acetogenic Prokaryotes. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The Prokaryotes: Volume 2: Ecophysiology and Biochemistry (pp. 354–420). Springer. View Publication., 28Zhuang, G.-C., Peña-Montenegro, T. D., Montgomery, A., Montoya, J. P., & Joye, S. B. (2019). Significance of Acetate as a Microbial Carbon and Energy Source in the Water Column of Gulf of Mexico: Implications for Marine Carbon Cycling. Global Biogeochemical Cycles, 33(2), 223–235. View Publication. Engineered organisms and biobased systems could upgrade intermediates like acetate,29Hu, P., Chakraborty, S., Kumar, A., Woolston, B., Liu, H., Emerson, D., & Stephanopoulos, G. (2016). Integrated bioprocess for conversion of gaseous substrates to liquids. Proceedings of the National Academy of Sciences, 113(14), 3773–3778. View Publication. or capture and convert carbon oxides directly, into more complex, value-added commodities.30Köpke, M., & Simpson, S. D. (2020). Pollution to products: Recycling of ‘above ground’ carbon by gas fermentation. Current Opinion in Biotechnology, 65, 180–189. View Publication., 31Fackler, N., Heijstra, B. D., Rasor, B. J., Brown, H., Martin, J., Ni, Z., Shebek, K. M., Rosin, R. R., Simpson, S. D., Tyo, K. E., Giannone, R. J., Hettich, R. L., Tschaplinski, T. J., Leang, C., Brown, S. D., Jewett, M. C., & Köpke, M. (2021). Stepping on the Gas to a Circular Economy: Accelerating Development of Carbon-Negative Chemical Production from Gas Fermentation. Annual Review of Chemical and Biomolecular Engineering, 12(1), 439–470. View Publication., 32Liew, F. E., Nogle, R., Abdalla, T., Rasor, B. J., Canter, C., Jensen, R. O., Wang, L., Strutz, J., Chirania, P., De Tissera, S., Mueller, A. P., Ruan, Z., Gao, A., Tran, L., Engle, N. L., Bromley, J. C., Daniell, J., Conrado, R., Tschaplinski, T. J., … Köpke, M. (2022). Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nature Biotechnology, 40(3), 335–344. View Publication. Because many photosynthetic and chemoautotrophic organisms convert CO2 into biomass through carbon fixation, essentially turning gaseous CO2 into solid carbon, they conveniently achieve carbon capture and storage at the same time, enabling carbon negative manufacturing.33Scown, C. D., & Keasling, J. D. (2022). Sustainable manufacturing with synthetic biology. Nature Biotechnology, 40(3), 304–307. View Publication. For instance, bacteria could be engineered to convert carbon oxides into precursors for acrylic glass,34Liew, F. E., Nogle, R., Abdalla, T., Rasor, B. J., Canter, C., Jensen, R. O., Wang, L., Strutz, J., Chirania, P., De Tissera, S., Mueller, A. P., Ruan, Z., Gao, A., Tran, L., Engle, N. L., Bromley, J. C., Daniell, J., Conrado, R., Tschaplinski, T. J., … Köpke, M. (2022). Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nature Biotechnology, 40(3), 335–344. View Publication. bioplastics,35Ding, Y., Bertram, J. R., Eckert, C., Bommareddy, R. R., Patel, R., Conradie, A., Bryan, S., & Nagpal, P. (2019). Nanorg Microbial Factories: Light-Driven Renewable Biochemical Synthesis Using Quantum Dot-Bacteria Nanobiohybrids. Journal of the American Chemical Society, 141(26), 10272–10282. View Publication. or solid compounds like calcium carbonate,36Antunes, A. (2021). Climate change: Microbes to the rescue? View Publication. which could keep captured CO2 sequestered for tens to hundreds of years.37Chang, R., Kim, S., Lee, S., Choi, S., Kim, M., & Park, Y. (2017). Calcium Carbonate Precipitation for CO2 Storage and Utilization: A Review of the Carbonate Crystallization and Polymorphism. Frontiers in Energy Research, 5, 17. View Publication. Such approaches could further help mitigate the risk of uncontrolled release from carbon capture and storage. Already, ethanol production from carbon-monoxide rich industrial off-gases with native chemoautotrophs is carried out at commercial scale by companies like LanzaTech. Charm Industrial, a carbon tech startup, aims to “permanently put CO2 back underground” by making bio-oil from the pyrolysis of waste biomass and injecting the oil into deep geological formations. Recent research has demonstrated the biosynthesis of starch from CO2 in cell-free systems,38Cai, T., Sun, H., Qiao, J., Zhu, L., Zhang, F., Zhang, J., Tang, Z., Wei, X., Yang, J., Yuan, Q., Wang, W., Yang, X., Chu, H., Wang, Q., You, C., Ma, H., Sun, Y., Li, Y., Li, C., … Ma, Y. (2021). Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 373(6562), 1523–1527. View Publication. the production of cotton-alternative cellulose from CO2,39RUBI Laboratories. Retrieved from https://www.rubilaboratories.com/ and the production of value-added chemicals in co-cultured microbial consortium.40Cha, S., Lim, H. G., Kwon, S., Kim, D.-H., Kang, C. W., & Jung, G. Y. (2021). Design of mutualistic microbial consortia for stable conversion of carbon monoxide to value-added chemicals. Metabolic Engineering, 64, 146–153. View Publication. Similarly, a range of chemical production from methane has been described in engineered methanotrophs.41Nazem-Bokaee, H., Gopalakrishnan, S., Ferry, J. G., Wood, T. K., & Maranas, C. D. (2016). Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans. Microbial Cell Factories, 15(1), 10. View Publication., 42McAnulty, M. J., Poosarla, V. G., Li, J., Soo, V. W. C., Zhu, F., & Wood, T. K. (2017). Metabolic engineering of Methanosarcina acetivorans for lactate production from methane. Biotechnology and Bioengineering, 114(4), 852–861. View Publication., 43Nguyen, T. T., Lee, O. K., Naizabekov, S., & Lee, E. Y. (2020). Bioconversion of methane to cadaverine and lysine using an engineered type II methanotroph, Methylosinus trichosporium OB3b. Green Chemistry, 22(22), 7803–7811. View Publication., 44Strong, P. J., Kalyuzhnaya, M., Silverman, J., & Clarke, W. P. (2016). A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation. Bioresource Technology, 215, 314–323. View Publication. In addition to CO2 and methane conversion, capturing and conversion carbon oxide containing off-gases from heavy industry (e.g., steel, ferroalloy) or syngas from gasification of various solid wastes via microbial gas fermentation into a range of chemicals has been demonstrated45Köpke, M., & Simpson, S. D. (2020). Pollution to products: Recycling of ‘above ground’ carbon by gas fermentation. Current Opinion in Biotechnology, 65, 180–189. View Publication. and a recent study demonstrated production of platform chemicals acetone and isopropanol at high rates in an industrial pilot.46Liew, F. E., Nogle, R., Abdalla, T., Rasor, B. J., Canter, C., Jensen, R. O., Wang, L., Strutz, J., Chirania, P., De Tissera, S., Mueller, A. P., Ruan, Z., Gao, A., Tran, L., Engle, N. L., Bromley, J. C., Daniell, J., Conrado, R., Tschaplinski, T. J., … Köpke, M. (2022). Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nature Biotechnology, 40(3), 335–344. View Publication; Summarized by Scown, C. D., & Keasling, J. D. (2022). Sustainable manufacturing with synthetic biology. Nature Biotechnology, 40(3), 304–307. View Publication. Further, macroalgae could sequester nitrates and phosphates, followed by harvesting and use as low/negative-carbon fertilizers. Where no concentrated CO2 or methane stream is available as required for many conversion or storage technologies, biology may also provide an opportunity to increase the concentration of gases, as an alternative to current direct air capture (DAC) methods.47Talekar, S., Jo, B. H., Dordick, J. S., & Kim, J. (2022). Carbonic anhydrase for CO2 capture, conversion and utilization. Current Opinion in Biotechnology, 74, 230–240. View Publication.

The processes described above could be used to store and utilize GHGs captured at emission sources. Concentrated streams, such as emissions from power plants, are easier to mitigate than diluted sources, such as diffuse GHGs in the atmosphere. While engineered organisms are currently tested in lab settings using controlled amounts of CO2 or methane as input, we still need to develop engineering capabilities to enable the biosequestration of environmental and diffuse carbon at an industrial scale. Improving gas fermentation technology will be key to accomplishing this.48Köpke, M., & Simpson, S. D. (2020). Pollution to products: Recycling of ‘above ground’ carbon by gas fermentation. Current Opinion in Biotechnology, 65, 180–189. View Publication., 49Fackler, N., Heijstra, B. D., Rasor, B. J., Brown, H., Martin, J., Ni, Z., Shebek, K. M., Rosin, R. R., Simpson, S. D., Tyo, K. E., Giannone, R. J., Hettich, R. L., Tschaplinski, T. J., Leang, C., Brown, S. D., Jewett, M. C., & Köpke, M. (2021). Stepping on the Gas to a Circular Economy: Accelerating Development of Carbon-Negative Chemical Production from Gas Fermentation. Annual Review of Chemical and Biomolecular Engineering, 12(1), 439–470. View Publication. These capabilities will be important stepping stones towards enabling organisms to capture different types of GHGs from concentrated streams and ambient air and convert captured GHG molecules into value-added products.

Breakthrough Capabilities & Milestones

Improve CO2 uptake by engineering more efficient photosynthetic organisms (plants, algae, cyanobacteria).

*Moreno-Villena, J. J., Zhou, H., Gilman, I. S., Tausta, S. L., Cheung, C. Y. M., & Edwards, E. J. (2022). Spatial resolution of an integrated C4+CAM photosynthetic metabolism. Science Advances, 8(31), eabn2349. View Publication.

Enable efficient carbon capture by engineered chemoautotrophs.

Enable organisms to utilize captured carbon to produce value-added chemicals and materials.

Enable carbon capture and utilization by enzymes or cell-free systems.

Footnotes

  1. Russell, M. J., & Martin, W. (2004). The rocky roots of the acetyl-CoA pathway. Trends in Biochemical Sciences, 29(7), 358–363. https://doi.org/10.1016/j.tibs.2004.05.007
  2. Köpke, M. (2022). Redesigning CO2 fixation. Nature Synthesis, 1(8), 584–585. https://doi.org/10.1038/s44160-022-00131-3
  3. Berg, I. A. (2011). Ecological Aspects of the Distribution of Different Autotrophic CO2 Fixation Pathways. Applied and Environmental Microbiology, 77(6), 1925–1936. https://doi.org/10.1128/AEM.02473-10
  4. Bar-Even, A., Noor, E., & Milo, R. (2012). A survey of carbon fixation pathways through a quantitative lens. Journal of Experimental Botany, 63(6), 2325–2342. https://doi.org/10.1093/jxb/err417
  5. Zhang, Y., Pribil, M., Palmgren, M., & Gao, C. (2020). A CRISPR way for accelerating improvement of food crops. Nature Food, 1(4), 200–205. https://doi.org/10.1038/s43016-020-0051-8
  6. Erb, T. J., & Zarzycki, J. (2018). A short history of RubisCO: The rise and fall (?) of Nature’s predominant CO2 fixing enzyme. Current Opinion in Biotechnology, 49, 100–107. https://doi.org/10.1016/j.copbio.2017.07.017
  7. Kirst, H., Gabilly, S. T., Niyogi, K. K., Lemaux, P. G., & Melis, A. (2017). Photosynthetic antenna engineering to improve crop yields. Planta, 245(5), 1009–1020. https://doi.org/10.1007/s00425-017-2659-y
  8. Cai, T., Sun, H., Qiao, J., Zhu, L., Zhang, F., Zhang, J., Tang, Z., Wei, X., Yang, J., Yuan, Q., Wang, W., Yang, X., Chu, H., Wang, Q., You, C., Ma, H., Sun, Y., Li, Y., Li, C., … Ma, Y. (2021). Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 373(6562), 1523–1527. https://doi.org/10.1126/science.abh4049
  9. Pavan, M., Reinmets, K., Garg, S., Mueller, A. P., Marcellin, E., Köpke, M., & Valgepea, K. (2022). Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy. Metabolic Engineering, 71, 117–141. https://doi.org/10.1016/j.ymben.2022.01.015
  10. Dürre, P., & Eikmanns, B. J. (2015). C1-carbon sources for chemical and fuel production by microbial gas fermentation. Current Opinion in Biotechnology, 35, 63–72. https://doi.org/10.1016/j.copbio.2015.03.008
  11. Bennett, R. K., Dzvova, N., Dillon, M., Jones, S., Hestmark, K., Zhu, B., Helman, N., Greenfield, D., Clarke, E., & Papoutsakis, E. T. (2021). Expression of soluble methane monooxygenase in Escherichia coli enables methane conversion (p. 2021.08.05.455234). https://doi.org/10.1101/2021.08.05.455234
  12. Gleizer, S., Ben-Nissan, R., Bar-On, Y. M., Antonovsky, N., Noor, E., Zohar, Y., Jona, G., Krieger, E., Shamshoum, M., Bar-Even, A., & Milo, R. (2019). Conversion of Escherichia coli to Generate All Biomass Carbon from CO2. Cell, 179(6), 1255-1263.e12. https://doi.org/10.1016/j.cell.2019.11.009
  13. Bar-Even, A., Noor, E., Lewis, N. E., & Milo, R. (2010). Design and analysis of synthetic carbon fixation pathways. Proceedings of the National Academy of Sciences, 107(19), 8889–8894. https://doi.org/10.1073/pnas.0907176107
  14. Scheffen, M., Marchal, D. G., Beneyton, T., Schuller, S. K., Klose, M., Diehl, C., Lehmann, J., Pfister, P., Carrillo, M., He, H., Aslan, S., Cortina, N. S., Claus, P., Bollschweiler, D., Baret, J.-C., Schuller, J. M., Zarzycki, J., Bar-Even, A., & Erb, T. J. (2021). A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation. Nature Catalysis, 4(2), 105–115. https://doi.org/10.1038/s41929-020-00557-y
  15. Flamholz, A. I., Prywes, N., Moran, U., Davidi, D., Bar-On, Y. M., Oltrogge, L. M., Alves, R., Savage, D., & Milo, R. (2019). Revisiting Trade-offs between Rubisco Kinetic Parameters. Biochemistry, 58(31), 3365–3376. https://doi.org/10.1021/acs.biochem.9b00237
  16. Bar-Even, A. (2018). Daring metabolic designs for enhanced plant carbon fixation. Plant Science, 273, 71–83. https://doi.org/10.1016/j.plantsci.2017.12.007
  17. Wu, C., Lo, J., Urban, C., Gao, X., Yang, B., Humphreys, J., Shinde, S., Wang, X., Chou, K. J., Maness, P., Tsesmetzis, N., Parker, D., & Xiong, W. (2022). Acetyl-CoA synthesis through a bicyclic carbon-fixing pathway in gas-fermenting bacteria. Nature Synthesis, 1(8), 615–625. https://doi.org/10.1038/s44160-022-00095-4
  18. Köpke, M. (2022). Redesigning CO2 fixation. Nature Synthesis, 1(8), 584–585. https://doi.org/10.1038/s44160-022-00131-3
  19. Scheffen, M., Marchal, D. G., Beneyton, T., Schuller, S. K., Klose, M., Diehl, C., Lehmann, J., Pfister, P., Carrillo, M., He, H., Aslan, S., Cortina, N. S., Claus, P., Bollschweiler, D., Baret, J.-C., Schuller, J. M., Zarzycki, J., Bar-Even, A., & Erb, T. J. (2021). A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation. Nature Catalysis, 4(2), 105–115. https://doi.org/10.1038/s41929-020-00557-y
  20. Öppinger, C., Kremp, F., & Müller, V. (2022). Is reduced ferredoxin the physiological electron donor for MetVF-type methylenetetrahydrofolate reductases in acetogenesis? A hypothesis. International Microbiology, 25(1), 75–88. https://doi.org/10.1007/s10123-021-00190-0
  21. Kremp, F., Roth, J., & Müller, V. (2022). A Third Way of Energy Conservation in Acetogenic Bacteria. Microbiology Spectrum, 0(0), e01385-22. https://doi.org/10.1128/spectrum.01385-22
  22. Köpke, M. (2022). Redesigning CO2 fixation. Nature Synthesis, 1(8), 584–585. https://doi.org/10.1038/s44160-022-00131-3
  23. Bar-Even, A., Noor, E., & Milo, R. (2012). A survey of carbon fixation pathways through a quantitative lens. Journal of Experimental Botany, 63(6), 2325–2342. https://doi.org/10.1093/jxb/err417
  24. Claassens, N. J., Cotton, C. A. R., Kopljar, D., & Bar-Even, A. (2019). Making quantitative sense of electromicrobial production. Nature Catalysis, 2(5), 437–447. https://doi.org/10.1038/s41929-019-0272-0
  25. Fast, A. G., & Papoutsakis, E. T. (2012). Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Current Opinion in Chemical Engineering, 1(4), 380–395. https://doi.org/10.1016/j.coche.2012.07.005
  26. Kaster, A.-K., Goenrich, M., Seedorf, H., Liesegang, H., Wollherr, A., Gottschalk, G., & Thauer, R. K. (2011). More Than 200 Genes Required for Methane Formation from H2 and CO2 and Energy Conservation Are Present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. Archaea, 2011, e973848. https://doi.org/10.1155/2011/973848
  27. Drake, H. L., Küsel, K., & Matthies, C. (2006). Acetogenic Prokaryotes. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The Prokaryotes: Volume 2: Ecophysiology and Biochemistry (pp. 354–420). Springer. https://doi.org/10.1007/0-387-30742-7_13
  28. Zhuang, G.-C., Peña-Montenegro, T. D., Montgomery, A., Montoya, J. P., & Joye, S. B. (2019). Significance of Acetate as a Microbial Carbon and Energy Source in the Water Column of Gulf of Mexico: Implications for Marine Carbon Cycling. Global Biogeochemical Cycles, 33(2), 223–235. https://doi.org/10.1029/2018GB006129
  29. Hu, P., Chakraborty, S., Kumar, A., Woolston, B., Liu, H., Emerson, D., & Stephanopoulos, G. (2016). Integrated bioprocess for conversion of gaseous substrates to liquids. Proceedings of the National Academy of Sciences, 113(14), 3773–3778. https://doi.org/10.1073/pnas.1516867113
  30. Köpke, M., & Simpson, S. D. (2020). Pollution to products: Recycling of ‘above ground’ carbon by gas fermentation. Current Opinion in Biotechnology, 65, 180–189. https://doi.org/10.1016/j.copbio.2020.02.017
  31. Fackler, N., Heijstra, B. D., Rasor, B. J., Brown, H., Martin, J., Ni, Z., Shebek, K. M., Rosin, R. R., Simpson, S. D., Tyo, K. E., Giannone, R. J., Hettich, R. L., Tschaplinski, T. J., Leang, C., Brown, S. D., Jewett, M. C., & Köpke, M. (2021). Stepping on the Gas to a Circular Economy: Accelerating Development of Carbon-Negative Chemical Production from Gas Fermentation. Annual Review of Chemical and Biomolecular Engineering, 12(1), 439–470. https://doi.org/10.1146/annurev-chembioeng-120120-021122
  32. Liew, F. E., Nogle, R., Abdalla, T., Rasor, B. J., Canter, C., Jensen, R. O., Wang, L., Strutz, J., Chirania, P., De Tissera, S., Mueller, A. P., Ruan, Z., Gao, A., Tran, L., Engle, N. L., Bromley, J. C., Daniell, J., Conrado, R., Tschaplinski, T. J., … Köpke, M. (2022). Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nature Biotechnology, 40(3), 335–344. https://doi.org/10.1038/s41587-021-01195-w
  33. Scown, C. D., & Keasling, J. D. (2022). Sustainable manufacturing with synthetic biology. Nature Biotechnology, 40(3), 304–307. https://doi.org/10.1038/s41587-022-01248-8
  34. Liew, F. E., Nogle, R., Abdalla, T., Rasor, B. J., Canter, C., Jensen, R. O., Wang, L., Strutz, J., Chirania, P., De Tissera, S., Mueller, A. P., Ruan, Z., Gao, A., Tran, L., Engle, N. L., Bromley, J. C., Daniell, J., Conrado, R., Tschaplinski, T. J., … Köpke, M. (2022). Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nature Biotechnology, 40(3), 335–344. https://doi.org/10.1038/s41587-021-01195-w
  35. Ding, Y., Bertram, J. R., Eckert, C., Bommareddy, R. R., Patel, R., Conradie, A., Bryan, S., & Nagpal, P. (2019). Nanorg Microbial Factories: Light-Driven Renewable Biochemical Synthesis Using Quantum Dot-Bacteria Nanobiohybrids. Journal of the American Chemical Society, 141(26), 10272–10282. https://doi.org/10.1021/jacs.9b02549
  36. Antunes, A. (2021). Climate change: Microbes to the rescue? Retrieved October 21, 2021, from https://microbiologysociety.org/publication/past-issues/life-on-a-changing-planet/article/climate-change-microbes-to-the-rescue.html
  37. Chang, R., Kim, S., Lee, S., Choi, S., Kim, M., & Park, Y. (2017). Calcium Carbonate Precipitation for CO2 Storage and Utilization: A Review of the Carbonate Crystallization and Polymorphism. Frontiers in Energy Research, 5, 17. https://doi.org/10.3389/fenrg.2017.00017
  38. Cai, T., Sun, H., Qiao, J., Zhu, L., Zhang, F., Zhang, J., Tang, Z., Wei, X., Yang, J., Yuan, Q., Wang, W., Yang, X., Chu, H., Wang, Q., You, C., Ma, H., Sun, Y., Li, Y., Li, C., … Ma, Y. (2021). Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 373(6562), 1523–1527. https://doi.org/10.1126/science.abh4049
  39. RUBI Laboratories. Retrieved from https://www.rubilaboratories.com/
  40. Cha, S., Lim, H. G., Kwon, S., Kim, D.-H., Kang, C. W., & Jung, G. Y. (2021). Design of mutualistic microbial consortia for stable conversion of carbon monoxide to value-added chemicals. Metabolic Engineering, 64, 146–153. https://doi.org/10.1016/j.ymben.2021.02.001
  41. Nazem-Bokaee, H., Gopalakrishnan, S., Ferry, J. G., Wood, T. K., & Maranas, C. D. (2016). Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans. Microbial Cell Factories, 15(1), 10. https://doi.org/10.1186/s12934-015-0404-4
  42. McAnulty, M. J., Poosarla, V. G., Li, J., Soo, V. W. C., Zhu, F., & Wood, T. K. (2017). Metabolic engineering of Methanosarcina acetivorans for lactate production from methane. Biotechnology and Bioengineering, 114(4), 852–861. https://doi.org/10.1002/bit.26208
  43. Nguyen, T. T., Lee, O. K., Naizabekov, S., & Lee, E. Y. (2020). Bioconversion of methane to cadaverine and lysine using an engineered type II methanotroph, Methylosinus trichosporium OB3b. Green Chemistry, 22(22), 7803–7811. https://doi.org/10.1039/D0GC02232B
  44. Strong, P. J., Kalyuzhnaya, M., Silverman, J., & Clarke, W. P. (2016). A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation. Bioresource Technology, 215, 314–323. https://doi.org/10.1016/j.biortech.2016.04.099
  45. Köpke, M., & Simpson, S. D. (2020). Pollution to products: Recycling of ‘above ground’ carbon by gas fermentation. Current Opinion in Biotechnology, 65, 180–189. https://doi.org/10.1016/j.copbio.2020.02.017
  46. Liew, F. E., Nogle, R., Abdalla, T., Rasor, B. J., Canter, C., Jensen, R. O., Wang, L., Strutz, J., Chirania, P., De Tissera, S., Mueller, A. P., Ruan, Z., Gao, A., Tran, L., Engle, N. L., Bromley, J. C., Daniell, J., Conrado, R., Tschaplinski, T. J., … Köpke, M. (2022). Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nature Biotechnology, 40(3), 335–344. https://doi.org/10.1038/s41587-021-01195-w; Summarized by Scown, C. D., & Keasling, J. D. (2022). Sustainable manufacturing with synthetic biology. Nature Biotechnology, 40(3), 304–307. https://doi.org/10.1038/s41587-022-01248-8
  47. Talekar, S., Jo, B. H., Dordick, J. S., & Kim, J. (2022). Carbonic anhydrase for CO2 capture, conversion and utilization. Current Opinion in Biotechnology, 74, 230–240. https://doi.org/10.1016/j.copbio.2021.12.003
  48. Köpke, M., & Simpson, S. D. (2020). Pollution to products: Recycling of ‘above ground’ carbon by gas fermentation. Current Opinion in Biotechnology, 65, 180–189. https://doi.org/10.1016/j.copbio.2020.02.017
  49. Fackler, N., Heijstra, B. D., Rasor, B. J., Brown, H., Martin, J., Ni, Z., Shebek, K. M., Rosin, R. R., Simpson, S. D., Tyo, K. E., Giannone, R. J., Hettich, R. L., Tschaplinski, T. J., Leang, C., Brown, S. D., Jewett, M. C., & Köpke, M. (2021). Stepping on the Gas to a Circular Economy: Accelerating Development of Carbon-Negative Chemical Production from Gas Fermentation. Annual Review of Chemical and Biomolecular Engineering, 12(1), 439–470. https://doi.org/10.1146/annurev-chembioeng-120120-021122
  50. Hayer‐Hartl, M. (2017). From chaperonins to Rubisco assembly and metabolic repair. Protein Science : A Publication of the Protein Society, 26(12), 2324–2333. https://doi.org/10.1002/pro.3309
  51. Mokhtari, D. A., Appel, M. J., Fordyce, P. M., & Herschlag, D. (2021). High throughput and quantitative enzymology in the genomic era. Current Opinion in Structural Biology, 71, 259–273. https://doi.org/10.1016/j.sbi.2021.07.010
  52. Scales, J. C., Parry, M. A. J., & Salvucci, M. E. (2014). A non-radioactive method for measuring Rubisco activase activity in the presence of variable ATP: ADP ratios, including modifications for measuring the activity and activation state of Rubisco. Photosynthesis Research, 119(3), 355–365. https://doi.org/10.1007/s11120-013-9964-5
  53. Panich, J., Fong, B., & Singer, S. W. (2021). Metabolic Engineering of Cupriavidus necator H16 for Sustainable Biofuels from CO2. Trends in Biotechnology, 39(4), 412–424. https://doi.org/10.1016/j.tibtech.2021.01.001
  54. Erb, T. J., & Zarzycki, J. (2018). A short history of RubisCO: The rise and fall (?) of Nature’s predominant CO2 fixing enzyme. Current Opinion in Biotechnology, 49, 100–107. https://doi.org/10.1016/j.copbio.2017.07.017
  55. Lin, M. T., Occhialini, A., Andralojc, P. J., Parry, M. A. J., & Hanson, M. R. (2014). A faster Rubisco with potential to increase photosynthesis in crops. Nature, 513(7519), 547–550. https://doi.org/10.1038/nature13776
  56. Ermakova, M., Arrivault, S., Giuliani, R., Danila, F., Alonso-Cantabrana, H., Vlad, D., Ishihara, H., Feil, R., Guenther, M., Borghi, G. L., Covshoff, S., Ludwig, M., Cousins, A. B., Langdale, J. A., Kelly, S., Lunn, J. E., Stitt, M., von Caemmerer, S., & Furbank, R. T. (2021). Installation of C4 photosynthetic pathway enzymes in rice using a single construct. Plant Biotechnology Journal, 19(3), 575–588. https://doi.org/10.1111/pbi.13487
  57. Schwander, T., Schada von Borzyskowski, L., Burgener, S., Cortina, N. S., & Erb, T. J. (2016). A synthetic pathway for the fixation of carbon dioxide in vitro. Science, 354(6314), 900–904. https://doi.org/10.1126/science.aah5237
  58. Abel, A. J., Hilzinger, J. M., Arkin, A. P., & Clark, D. S. (2022b). Systems-informed genome mining for electroautotrophic microbial production. Bioelectrochemistry, 145, 108054. https://doi.org/10.1016/j.bioelechem.2022.108054
  59. Nielsen, J., & Keasling, J. D. (2016). Engineering Cellular Metabolism. Cell, 164(6), 1185–1197. https://doi.org/10.1016/j.cell.2016.02.004
  60. Kantzow, C., & Weuster-Botz, D. (2016). Effects of hydrogen partial pressure on autotrophic growth and product formation of Acetobacterium woodii. Bioprocess and Biosystems Engineering, 39(8), 1325–1330. https://doi.org/10.1007/s00449-016-1600-2
  61. Abel, A. J., Adams, J. D., Hilzinger, J. M., & Arkin, A. P. (2022a). Charting a narrow course for direct electron uptake-facilitated electromicrobial production (p. 2022.05.28.493842). bioRxiv. https://doi.org/10.1101/2022.05.28.493842
  62. McQueen, N., Gomes, K. V., McCormick, C., Blumanthal, K., Pisciotta, M., & Wilcox, J. (2021). A review of direct air capture (DAC): Scaling up commercial technologies and innovating for the future. Progress in Energy, 3(3), 032001. https://doi.org/10.1088/2516-1083/abf1ce
Last updated: September 19, 2022 Back