Current State-of-the-Art
Basic bottom-up, in vitro models (three or four organisms) exist to manipulate rhizosphere microbiomes,1Lozano, G. L., Bravo, J. I., Diago, M. F. G., Park, H. B., Hurley, A., Peterson, S. B., Stabb, E. V., Crawford, J. M., Broderick, N. A., & Handelsman, J. (2019). Introducing THOR, a Model Microbiome for Genetic Dissection of Community Behavior. mBIO, 10(2), 14. View Publication photosynthetic organisms,2Hays, S. G., Yan, L. L. W., Silver, P. A., & Ducat, D. C. (2017). Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction. Journal of Biological Engineering, 11(1), 4. View Publication and co-dependent communities of gut bacteria.3Ziesack, M., Gibson, T., Oliver, J. K. W., Shumaker, A. M., Hsu, B. B., Riglar, D. T., Giessen, T. W., DiBenedetto, N. V., Bry, L., Way, J. C., Silver, P. A., & Gerber, G. K. (2019). Engineered Interspecies Amino Acid Cross-Feeding Increases Population Evenness in a Synthetic Bacterial Consortium. mSystems, 4(4), 15. View Publication There has been recent success in engineering microbes found in important but experimentally challenging environments, such as Bacteriodes thetaiotamicron4Mimee, M., Tucker, A. C., Voigt, C. A., & Lu, T. K. (2015). Programming a Human Commensal Bacterium, Bacteroides thetaiotaomicron, to Sense and Respond to Stimuli in the Murine Gut Microbiota. Cell Systems, 1(1), 62–71. View Publication and Eggerthella lenta,5Bisanz, J. E., Soto-Perez, P., Noecker, C., Aksenov, A. A., Lam, K. N., Kenney, G. E., Bess, E. N., Haiser, H. J., Kyaw, T. S., Yu, F. B., Rekdal, V. M., Ha, C. W. Y., Devkota, S., Balskus, E. P., Dorrestein, P. C., Allen-Vercoe, E., & Turnbaugh, P. J. (2020). A Genomic Toolkit for the Mechanistic Dissection of Intractable Human Gut Bacteria. Cell Host & Microbe, 27(6), 1001-1013.e9. View Publication both found in the gut microbiome. Nascent efforts have been made in oleaginous yeasts, Neurospora, Aspergillus, Neocallimastigomycota, and archaea.6Wilken, St. E., Seppälä, S., Lankiewicz, T. S., Saxena, M., Henske, J. K., Salamov, A. A., Grigoriev, I. V., & O’Malley, M. A. (2020). Genomic and proteomic biases inform metabolic engineering strategies for anaerobic fungi. Metabolic Engineering Communications, 10, e00107. View Publication A few studies have used engineered Candida spp. as a live vaccine or for host factor secretion.7Nami, S., Mohammadi, R., Vakili, M., Khezripour, K., Mirzaei, H., & Morovati, H. (2019). Fungal vaccines, mechanism of actions and immunology: A comprehensive review. Biomedicine & Pharmacotherapy, 109, 333–344. View Publication,8Saville, S. P., Lazzell, A. L., Chaturvedi, A. K., Monteagudo, C., & Lopez-Ribot, J. L. (2009). Efficacy of a Genetically Engineered Candida albicans tet-NRG1 Strain as an Experimental Live Attenuated Vaccine against Hematogenously Disseminated Candidiasis. Clinical and Vaccine Immunology, 16(3), 430–432. View Publication Standardized protocols, parts, and chassis for diverse organisms will allow for more predictable, fine-tuned control over metabolic outputs and functions in engineered communities.9Scarborough, M. J., Lawson, C. E., Hamilton, J. J., Donohue, T. J., & Noguera, D. R. (2018). Metatranscriptomic and Thermodynamic Insights into Medium-Chain Fatty Acid Production Using an Anaerobic Microbiome. mSystems, 3(6), 21. View Publication
There are still challenges in predictive computational models for bottom-up microbiome design.10Feist, A. M., & Palsson, B. O. (2016). What do cells actually want? Genome Biology, 17(1), 110. View Publication,11Lawson, C. E., Harcombe, W. R., Hatzenpichler, R., Lindemann, S. R., Löffler, F. E., O’Malley, M. A., García Martín, H., Pfleger, B. F., Raskin, L., Venturelli, O. S., Weissbrodt, D. G., Noguera, D. R., & McMahon, K. D. (2019). Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 17(12), 725–741. View Publication A predictive dynamic model of a small anaerobic microbial community was used to infer the design principles behind the microbiome’s stable coexistence.12Venturelli, O. S., Carr, A. V., Fisher, G., Hsu, R. H., Lau, R., Bowen, B. P., Hromada, S., Northen, T., & Arkin, A. P. (2018). Deciphering microbial interactions in synthetic human gut microbiome communities. Molecular Systems Biology, 14(6). View Publication Additional confounding factors have also been identified, such as microbial invaders that do not persist in the microbiome, but can still influence community evolution due to their impact on bioacid availability and pH.13Amor, D. R., Ratzke, C., & Gore, J. (2020). Transient invaders can induce shifts between alternative stable states of microbial communities. Science Advances, 6(eaay8676), 9.View Publication
Breakthrough Capabilities & Milestones
Design and engineer functional microbiomes by adding or modifying individual species of microbes.
Generate synthetic microbiomes with two to five characterized species (of different functional guilds) imitating functions of a natural community.
Control community functional dynamics (i.e., abundance of species and/or expression profile) in a synthetic microbiome composed of two to five characterized species (of different functional guilds).
Design a community with a sufficient set of partially redundant guild members so that it is functionally robust against environmental or community variations.
Predict and engineer interactions between different species within the microbiome.
Establish methods for determining what metabolites are biologically available to a microbiome in any environment (i.e., identify what a microbe can use to grow).
From metagenomic data, identify individual microbial species with related or coherent functions.
Engineer and optimize microbiomes where mutually-required interactions between species and functional guilds are implemented.
Generate predictive models and experimental frameworks to engineer microbiomes with defined species composition and interactions.
Predict and engineer interactions between a microbiome and the environment (e.g., temperature, oxygen concentration, pH, small molecules or drugs, dietary compounds).
Engineer non-model microbiome species to activate a genetic program in response to a single environmental perturbation.
Establish and validate experimental frameworks to engineer microbiomes responsive to the desired environmental perturbations.
Engineer a microbiome that responds to multiple environmental perturbations.
“Routine” prediction and manipulation of any species within a microbiome using environmental perturbations for desired functions
Establish Design-Build-Test-Learn pipelines for bottom-up microbiome engineering – from culturing protocols, to genetic tools, to ‘deployment’ in controlled and natural microbiomes.
Develop standard protocols for microbiome stock maintenance and propagation.
Computationally predict behaviors of individual microbes within the biome and determine minimal nutrient requirements.
Engineer markerless selection methods that allow for stable maintenance of an engineered strain in a microbiome.
Expand use of and capacity of high-throughput platforms to allow for increased experimental reproducibility and accuracy.
Engineer methods that enable fully autonomous microbiome characterization (e.g., grow in culture, measure metabolism) with limited prior knowledge of a sample.
Rapidly develop tools to control any organism (e.g., identify culture conditions, genetic manipulation, spatial localization), including uncultivated organisms, after initial identification via sequencing.
Footnotes
- Lozano, G. L., Bravo, J. I., Diago, M. F. G., Park, H. B., Hurley, A., Peterson, S. B., Stabb, E. V., Crawford, J. M., Broderick, N. A., & Handelsman, J. (2019). Introducing THOR, a Model Microbiome for Genetic Dissection of Community Behavior. mBIO, 10(2), 14. https://doi.org/10.1128/mBio.02846-18
- Hays, S. G., Yan, L. L. W., Silver, P. A., & Ducat, D. C. (2017). Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction. Journal of Biological Engineering, 11(1), 4. https://doi.org/10.1186/s13036-017-0048-5
- Ziesack, M., Gibson, T., Oliver, J. K. W., Shumaker, A. M., Hsu, B. B., Riglar, D. T., Giessen, T. W., DiBenedetto, N. V., Bry, L., Way, J. C., Silver, P. A., & Gerber, G. K. (2019). Engineered Interspecies Amino Acid Cross-Feeding Increases Population Evenness in a Synthetic Bacterial Consortium. mSystems, 4(4), 15. https://doi.org/10.1128/mSystems.00352-19
- Mimee, M., Tucker, A. C., Voigt, C. A., & Lu, T. K. (2015). Programming a Human Commensal Bacterium, Bacteroides thetaiotaomicron, to Sense and Respond to Stimuli in the Murine Gut Microbiota. Cell Systems, 1(1), 62–71. https://doi.org/10.1016/j.cels.2015.06.001
- Bisanz, J. E., Soto-Perez, P., Noecker, C., Aksenov, A. A., Lam, K. N., Kenney, G. E., Bess, E. N., Haiser, H. J., Kyaw, T. S., Yu, F. B., Rekdal, V. M., Ha, C. W. Y., Devkota, S., Balskus, E. P., Dorrestein, P. C., Allen-Vercoe, E., & Turnbaugh, P. J. (2020). A Genomic Toolkit for the Mechanistic Dissection of Intractable Human Gut Bacteria. Cell Host & Microbe, 27(6), 1001-1013.e9. https://doi.org/10.1016/j.chom.2020.04.006
- Wilken, St. E., Seppälä, S., Lankiewicz, T. S., Saxena, M., Henske, J. K., Salamov, A. A., Grigoriev, I. V., & O’Malley, M. A. (2020). Genomic and proteomic biases inform metabolic engineering strategies for anaerobic fungi. Metabolic Engineering Communications, 10, e00107. https://doi.org/10.1016/j.mec.2019.e00107
- Nami, S., Mohammadi, R., Vakili, M., Khezripour, K., Mirzaei, H., & Morovati, H. (2019). Fungal vaccines, mechanism of actions and immunology: A comprehensive review. Biomedicine & Pharmacotherapy, 109, 333–344. https://doi.org/10.1016/j.biopha.2018.10.075
- Saville, S. P., Lazzell, A. L., Chaturvedi, A. K., Monteagudo, C., & Lopez-Ribot, J. L. (2009). Efficacy of a Genetically Engineered Candida albicans tet-NRG1 Strain as an Experimental Live Attenuated Vaccine against Hematogenously Disseminated Candidiasis. Clinical and Vaccine Immunology, 16(3), 430–432. https://doi.org/10.1128/CVI.00480-08
- Scarborough, M. J., Lawson, C. E., Hamilton, J. J., Donohue, T. J., & Noguera, D. R. (2018). Metatranscriptomic and Thermodynamic Insights into Medium-Chain Fatty Acid Production Using an Anaerobic Microbiome. mSystems, 3(6), 21. https://doi.org/10.1128/mSystems.00221-18
- Feist, A. M., & Palsson, B. O. (2016). What do cells actually want? Genome Biology, 17(1), 110. https://doi.org/10.1186/s13059-016-0983-3
- Lawson, C. E., Harcombe, W. R., Hatzenpichler, R., Lindemann, S. R., Löffler, F. E., O’Malley, M. A., García Martín, H., Pfleger, B. F., Raskin, L., Venturelli, O. S., Weissbrodt, D. G., Noguera, D. R., & McMahon, K. D. (2019). Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 17(12), 725–741. https://doi.org/10.1038/s41579-019-0255-9
- Venturelli, O. S., Carr, A. V., Fisher, G., Hsu, R. H., Lau, R., Bowen, B. P., Hromada, S., Northen, T., & Arkin, A. P. (2018). Deciphering microbial interactions in synthetic human gut microbiome communities. Molecular Systems Biology, 14(6). https://doi.org/10.15252/msb.20178157
- Amor, D. R., Ratzke, C., & Gore, J. (2020). Transient invaders can induce shifts between alternative stable states of microbial communities. Science Advances, 6(eaay8676), 9.https://doi.org/10.1126/sciadv.aay8676
- Daeffler, K. N., Galley, J. D., Sheth, R. U., Ortiz‐Velez, L. C., Bibb, C. O., Shroyer, N. F., Britton, R. A., & Tabor, J. J. (2017). Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Molecular Systems Biology, 13(4), 923. https://doi.org/10.15252/msb.20167416
- Naydich, A. D., Nangle, S. N., Bues, J. J., Trivedi, D., Nissar, N., Inniss, M. C., Niederhuber, M. J., Way, J. C., Silver, P. A., & Riglar, D. T. (2019). Synthetic Gene Circuits Enable Systems-Level Biosensor Trigger Discovery at the Host-Microbe Interface. MSystems, 4(4), e00125-19, /msystems/4/4/mSys.00125-19.atom. https://doi.org/10.1128/mSystems.00125-19
- Piraner, D. I., Abedi, M. H., Moser, B. A., Lee-Gosselin, A., & Shapiro, M. G. (2017). Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nature Chemical Biology, 13(1), 75–80. https://doi.org/10.1038/nchembio.2233
- Riglar, D. T., Giessen, T. W., Baym, M., Kerns, S. J., Niederhuber, M. J., Bronson, R. T., Kotula, J. W., Gerber, G. K., Way, J. C., & Silver, P. A. (2017). Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nature Biotechnology, 35(7), 653–658. https://doi.org/10.1038/nbt.3879
- The Genome Standards Consortium, Bowers, R. M., Kyrpides, N. C., Stepanauskas, R., Harmon-Smith, M., Doud, D., Reddy, T. B. K., Schulz, F., Jarett, J., Rivers, A. R., Eloe-Fadrosh, E. A., Tringe, S. G., Ivanova, N. N., Copeland, A., Clum, A., Becraft, E. D., Malmstrom, R. R., Birren, B., Podar, M., … Woyke, T. (2017). Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nature Biotechnology, 35(8), 725–731. https://doi.org/10.1038/nbt.3893