Microbiome Engineering
Functional Biodiversity Goal:

Design microbiomes for any function or environment based on their component organisms or species (i.e., bottom-up engineering).

Current State-of-the-Art

Basic bottom-up, in vitro models (three or four organisms) exist to manipulate rhizosphere microbiomes,1Lozano, G. L., Bravo, J. I., Diago, M. F. G., Park, H. B., Hurley, A., Peterson, S. B., Stabb, E. V., Crawford, J. M., Broderick, N. A., & Handelsman, J. (2019). Introducing THOR, a Model Microbiome for Genetic Dissection of Community Behavior. mBIO, 10(2), 14. View Publication photosynthetic organisms,2Hays, S. G., Yan, L. L. W., Silver, P. A., & Ducat, D. C. (2017). Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction. Journal of Biological Engineering, 11(1), 4. View Publication and co-dependent communities of gut bacteria.3Ziesack, M., Gibson, T., Oliver, J. K. W., Shumaker, A. M., Hsu, B. B., Riglar, D. T., Giessen, T. W., DiBenedetto, N. V., Bry, L., Way, J. C., Silver, P. A., & Gerber, G. K. (2019). Engineered Interspecies Amino Acid Cross-Feeding Increases Population Evenness in a Synthetic Bacterial Consortium. mSystems, 4(4), 15. View Publication There has been recent success in engineering microbes found in important but experimentally challenging environments, such as Bacteriodes thetaiotamicron4Mimee, M., Tucker, A. C., Voigt, C. A., & Lu, T. K. (2015). Programming a Human Commensal Bacterium, Bacteroides thetaiotaomicron, to Sense and Respond to Stimuli in the Murine Gut Microbiota. Cell Systems, 1(1), 62–71. View Publication and Eggerthella lenta,5Bisanz, J. E., Soto-Perez, P., Noecker, C., Aksenov, A. A., Lam, K. N., Kenney, G. E., Bess, E. N., Haiser, H. J., Kyaw, T. S., Yu, F. B., Rekdal, V. M., Ha, C. W. Y., Devkota, S., Balskus, E. P., Dorrestein, P. C., Allen-Vercoe, E., & Turnbaugh, P. J. (2020). A Genomic Toolkit for the Mechanistic Dissection of Intractable Human Gut Bacteria. Cell Host & Microbe, 27(6), 1001-1013.e9. View Publication both found in the gut microbiome. Nascent efforts have been made in oleaginous yeasts, Neurospora, Aspergillus, Neocallimastigomycota, and archaea.6Wilken, St. E., Seppälä, S., Lankiewicz, T. S., Saxena, M., Henske, J. K., Salamov, A. A., Grigoriev, I. V., & O’Malley, M. A. (2020). Genomic and proteomic biases inform metabolic engineering strategies for anaerobic fungi. Metabolic Engineering Communications, 10, e00107. View Publication A few studies have used engineered Candida spp. as a live vaccine or for host factor secretion.7Nami, S., Mohammadi, R., Vakili, M., Khezripour, K., Mirzaei, H., & Morovati, H. (2019). Fungal vaccines, mechanism of actions and immunology: A comprehensive review. Biomedicine & Pharmacotherapy, 109, 333–344. View Publication,8Saville, S. P., Lazzell, A. L., Chaturvedi, A. K., Monteagudo, C., & Lopez-Ribot, J. L. (2009). Efficacy of a Genetically Engineered Candida albicans tet-NRG1 Strain as an Experimental Live Attenuated Vaccine against Hematogenously Disseminated Candidiasis. Clinical and Vaccine Immunology, 16(3), 430–432. View Publication Standardized protocols, parts, and chassis for diverse organisms will allow for more predictable, fine-tuned control over metabolic outputs and functions in engineered communities.9Scarborough, M. J., Lawson, C. E., Hamilton, J. J., Donohue, T. J., & Noguera, D. R. (2018). Metatranscriptomic and Thermodynamic Insights into Medium-Chain Fatty Acid Production Using an Anaerobic Microbiome. mSystems, 3(6), 21. View Publication

There are still challenges in predictive computational models for bottom-up microbiome design.10Feist, A. M., & Palsson, B. O. (2016). What do cells actually want? Genome Biology, 17(1), 110. View Publication,11Lawson, C. E., Harcombe, W. R., Hatzenpichler, R., Lindemann, S. R., Löffler, F. E., O’Malley, M. A., García Martín, H., Pfleger, B. F., Raskin, L., Venturelli, O. S., Weissbrodt, D. G., Noguera, D. R., & McMahon, K. D. (2019). Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 17(12), 725–741. View Publication A predictive dynamic model of a small anaerobic microbial community was used to infer the design principles behind the microbiome’s stable coexistence.12Venturelli, O. S., Carr, A. V., Fisher, G., Hsu, R. H., Lau, R., Bowen, B. P., Hromada, S., Northen, T., & Arkin, A. P. (2018). Deciphering microbial interactions in synthetic human gut microbiome communities. Molecular Systems Biology, 14(6). View Publication Additional confounding factors have also been identified, such as microbial invaders that do not persist in the microbiome, but can still influence community evolution due to their impact on bioacid availability and pH.13Amor, D. R., Ratzke, C., & Gore, J. (2020). Transient invaders can induce shifts between alternative stable states of microbial communities. Science Advances, 6(eaay8676), 9.View Publication

Breakthrough Capabilities & Milestones

Design and engineer functional microbiomes by adding or modifying individual species of microbes.

Predict and engineer interactions between different species within the microbiome.

Predict and engineer interactions between a microbiome and the environment (e.g., temperature, oxygen concentration, pH, small molecules or drugs, dietary compounds).

Establish Design-Build-Test-Learn pipelines for bottom-up microbiome engineering – from culturing protocols, to genetic tools, to ‘deployment’ in controlled and natural microbiomes.

Footnotes

  1. Lozano, G. L., Bravo, J. I., Diago, M. F. G., Park, H. B., Hurley, A., Peterson, S. B., Stabb, E. V., Crawford, J. M., Broderick, N. A., & Handelsman, J. (2019). Introducing THOR, a Model Microbiome for Genetic Dissection of Community Behavior. mBIO, 10(2), 14. https://doi.org/10.1128/mBio.02846-18
  2. Hays, S. G., Yan, L. L. W., Silver, P. A., & Ducat, D. C. (2017). Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction. Journal of Biological Engineering, 11(1), 4. https://doi.org/10.1186/s13036-017-0048-5
  3. Ziesack, M., Gibson, T., Oliver, J. K. W., Shumaker, A. M., Hsu, B. B., Riglar, D. T., Giessen, T. W., DiBenedetto, N. V., Bry, L., Way, J. C., Silver, P. A., & Gerber, G. K. (2019). Engineered Interspecies Amino Acid Cross-Feeding Increases Population Evenness in a Synthetic Bacterial Consortium. mSystems, 4(4), 15. https://doi.org/10.1128/mSystems.00352-19
  4. Mimee, M., Tucker, A. C., Voigt, C. A., & Lu, T. K. (2015). Programming a Human Commensal Bacterium, Bacteroides thetaiotaomicron, to Sense and Respond to Stimuli in the Murine Gut Microbiota. Cell Systems, 1(1), 62–71. https://doi.org/10.1016/j.cels.2015.06.001
  5. Bisanz, J. E., Soto-Perez, P., Noecker, C., Aksenov, A. A., Lam, K. N., Kenney, G. E., Bess, E. N., Haiser, H. J., Kyaw, T. S., Yu, F. B., Rekdal, V. M., Ha, C. W. Y., Devkota, S., Balskus, E. P., Dorrestein, P. C., Allen-Vercoe, E., & Turnbaugh, P. J. (2020). A Genomic Toolkit for the Mechanistic Dissection of Intractable Human Gut Bacteria. Cell Host & Microbe, 27(6), 1001-1013.e9. https://doi.org/10.1016/j.chom.2020.04.006
  6. Wilken, St. E., Seppälä, S., Lankiewicz, T. S., Saxena, M., Henske, J. K., Salamov, A. A., Grigoriev, I. V., & O’Malley, M. A. (2020). Genomic and proteomic biases inform metabolic engineering strategies for anaerobic fungi. Metabolic Engineering Communications, 10, e00107. https://doi.org/10.1016/j.mec.2019.e00107
  7. Nami, S., Mohammadi, R., Vakili, M., Khezripour, K., Mirzaei, H., & Morovati, H. (2019). Fungal vaccines, mechanism of actions and immunology: A comprehensive review. Biomedicine & Pharmacotherapy, 109, 333–344. https://doi.org/10.1016/j.biopha.2018.10.075
  8. Saville, S. P., Lazzell, A. L., Chaturvedi, A. K., Monteagudo, C., & Lopez-Ribot, J. L. (2009). Efficacy of a Genetically Engineered Candida albicans tet-NRG1 Strain as an Experimental Live Attenuated Vaccine against Hematogenously Disseminated Candidiasis. Clinical and Vaccine Immunology, 16(3), 430–432. https://doi.org/10.1128/CVI.00480-08
  9. Scarborough, M. J., Lawson, C. E., Hamilton, J. J., Donohue, T. J., & Noguera, D. R. (2018). Metatranscriptomic and Thermodynamic Insights into Medium-Chain Fatty Acid Production Using an Anaerobic Microbiome. mSystems, 3(6), 21. https://doi.org/10.1128/mSystems.00221-18
  10. Feist, A. M., & Palsson, B. O. (2016). What do cells actually want? Genome Biology, 17(1), 110. https://doi.org/10.1186/s13059-016-0983-3
  11. Lawson, C. E., Harcombe, W. R., Hatzenpichler, R., Lindemann, S. R., Löffler, F. E., O’Malley, M. A., García Martín, H., Pfleger, B. F., Raskin, L., Venturelli, O. S., Weissbrodt, D. G., Noguera, D. R., & McMahon, K. D. (2019). Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 17(12), 725–741. https://doi.org/10.1038/s41579-019-0255-9
  12. Venturelli, O. S., Carr, A. V., Fisher, G., Hsu, R. H., Lau, R., Bowen, B. P., Hromada, S., Northen, T., & Arkin, A. P. (2018). Deciphering microbial interactions in synthetic human gut microbiome communities. Molecular Systems Biology, 14(6). https://doi.org/10.15252/msb.20178157
  13. Amor, D. R., Ratzke, C., & Gore, J. (2020). Transient invaders can induce shifts between alternative stable states of microbial communities. Science Advances, 6(eaay8676), 9.https://doi.org/10.1126/sciadv.aay8676
  14. Daeffler, K. N., Galley, J. D., Sheth, R. U., Ortiz‐Velez, L. C., Bibb, C. O., Shroyer, N. F., Britton, R. A., & Tabor, J. J. (2017). Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Molecular Systems Biology, 13(4), 923. https://doi.org/10.15252/msb.20167416
  15. Naydich, A. D., Nangle, S. N., Bues, J. J., Trivedi, D., Nissar, N., Inniss, M. C., Niederhuber, M. J., Way, J. C., Silver, P. A., & Riglar, D. T. (2019). Synthetic Gene Circuits Enable Systems-Level Biosensor Trigger Discovery at the Host-Microbe Interface. MSystems, 4(4), e00125-19, /msystems/4/4/mSys.00125-19.atom. https://doi.org/10.1128/mSystems.00125-19
  16. Piraner, D. I., Abedi, M. H., Moser, B. A., Lee-Gosselin, A., & Shapiro, M. G. (2017). Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nature Chemical Biology, 13(1), 75–80. https://doi.org/10.1038/nchembio.2233
  17. Riglar, D. T., Giessen, T. W., Baym, M., Kerns, S. J., Niederhuber, M. J., Bronson, R. T., Kotula, J. W., Gerber, G. K., Way, J. C., & Silver, P. A. (2017). Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nature Biotechnology, 35(7), 653–658. https://doi.org/10.1038/nbt.3879
  18. The Genome Standards Consortium, Bowers, R. M., Kyrpides, N. C., Stepanauskas, R., Harmon-Smith, M., Doud, D., Reddy, T. B. K., Schulz, F., Jarett, J., Rivers, A. R., Eloe-Fadrosh, E. A., Tringe, S. G., Ivanova, N. N., Copeland, A., Clum, A., Becraft, E. D., Malmstrom, R. R., Birren, B., Podar, M., … Woyke, T. (2017). Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nature Biotechnology, 35(8), 725–731. https://doi.org/10.1038/nbt.3893
Last updated: October 1, 2020 Back