Current State-of-the-Art
Multiple approaches can be used to isolate and engineer functional microbiomes. Top-down engineering approaches have been applied to gut microbiomes,1Zhao, L., Zhang, F., Ding, X., Wu, G., Lam, Y. Y., Wang, X., Fu, H., Xue, X., Lu, C., Ma, J., Yu, L., Xu, C., Ren, Z., Xu, Y., Xu, S., Shen, H., Zhu, X., Shi, Y., Shen, Q., … Zhang, C. (2018). Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 359(6380), 1151–1156. https://doi.org/10.1126/science.aao5774 microbiomes for environmental remediation,2Löffler, F. E., & Edwards, E. A. (2006). Harnessing microbial activities for environmental cleanup. Current Opinion in Biotechnology, 17(3), 274–284. https://doi.org/10.1016/j.copbio.2006.05.001 and other microbiomes. A significant benefit to this approach is that communities are enriched based on their function and ability to grow together. However, the current deficiency in broadly applicable genetic tools and culture techniques oftentimes prevents fine-tuned manipulation of these communities, because they usually contain non-model organisms. Antibiotic selection has been used to enrich communities that effectively degrade lignocellulose, at which point a bottom-up approach was used for more detailed study.3Gilmore, S. P., Lankiewicz, T. S., Wilken, St. E., Brown, J. L., Sexton, J. A., Henske, J. K., Theodorou, M. K., Valentine, D. L., & O’Malley, M. A. (2019). Top-Down Enrichment Guides in Formation of Synthetic Microbial Consortia for Biomass Degradation. ACS Synthetic Biology, 8(9), 2174–2185. https://doi.org/10.1021/acssynbio.9b00271 Engineering functional guilds and tools to manipulate them will require improvements in data infrastructure, development of high-throughput microbiome models, and greater coordination between interdisciplinary scientific teams to effectively interpret data for model advancement.4Lawson, C. E., Harcombe, W. R., Hatzenpichler, R., Lindemann, S. R., Löffler, F. E., O’Malley, M. A., García Martín, H., Pfleger, B. F., Raskin, L., Venturelli, O. S., Weissbrodt, D. G., Noguera, D. R., & McMahon, K. D. (2019). Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 17(12), 725–741. https://doi.org/10.1038/s41579-019-0255-9
Techniques exist for delivering DNA to different organisms followed by varying means of genetic manipulation (e.g., maintenance of exogenous DNA, genome editing, gene regulation). However, the ability to deliver DNA or perform genetic manipulations is normally performed in pure cultures in the lab and is limited to a small handful of “model” organisms. Some basic strategies to deliver DNA exist (e.g., conjugation, phage delivery) and are being explored in the context of model microbial communities.5Ando, H., Lemire, S., Pires, D. P., & Lu, T. K. (2015). Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing. Cell Systems, 1(3), 187–196. https://doi.org/10.1016/j.cels.2015.08.013,6Brophy, J. A. N., Triassi, A. J., Adams, B. L., Renberg, R. L., Stratis-Cullum, D. N., Grossman, A. D., & Voigt, C. A. (2018). Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria. Nature Microbiology, 3(9), 1043–1053. https://doi.org/10.1038/s41564-018-0216-5,7Ronda, C., Chen, S. P., Cabral, V., Yaung, S. J., & Wang, H. H. (2019). Metagenomic engineering of the mammalian gut microbiome in situ. Nature Methods, 16(2), 167–170. https://doi.org/10.1038/s41592-018-0301-y,8Wang, G., Zhao, Z., Ke, J., Engel, Y., Shi, Y.-M., Robinson, D., Bingol, K., Zhang, Z., Bowen, B., Louie, K., Wang, B., Evans, R., Miyamoto, Y., Cheng, K., Kosina, S., De Raad, M., Silva, L., Luhrs, A., Lubbe, A., … Yoshikuni, Y. (2019). CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. Nature Microbiology, 4(12), 2498–2510. https://doi.org/10.1038/s41564-019-0573-8,9Yosef, I., Goren, M. G., Globus, R., Molshanski-Mor, S., & Qimron, U. (2017). Extending the Host Range of Bacteriophage Particles for DNA Transduction. Molecular Cell, 66(5), 721-728.e3. https://doi.org/10.1016/j.molcel.2017.04.025 There are also ways available to selectively eliminate individual members of a community using lytic phages or the delivery of CRISPR-based antimicrobials.10Fagen, J. R., Collias, D., Singh, A. K., & Beisel, C. L. (2017). Advancing the design and delivery of CRISPR antimicrobials. Current Opinion in Biomedical Engineering, 4, 57–64. https://doi.org/10.1016/j.cobme.2017.10.001,11Yehl, K., Lemire, S., Yang, A. C., Ando, H., Mimee, M., Torres, M. D. T., de la Fuente-Nunez, C., & Lu, T. K. (2019). Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis. Cell, 179(2), 459-469.e9. https://doi.org/10.1016/j.cell.2019.09.015
Breakthrough Capabilities & Milestones
Characterize the functional guild composition of any microbiome.
Identify coherent functional subunits from metagenomic data and map activity (e.g., metatranscriptomic data, stable isotope probing, metabolomics).
Rapid characterization of existing functional guilds before introducing or eliminating new members (e.g., identify the microbiome members of the guild and their interactions, and characterize the interactions that an additional microbe would have with the existing members).
Map functional guild metabolic pathways and dependencies for growth, colonization, and anabolism.
Non-destructive techniques to characterize functional guild composition and function (i.e., avoid unnecessary -omics, find ways to reduce temporal, spatial, and cell-to-cell variability).
Rapidly characterize all species and their interactions within any natural microbiome, in situ and with high spatial resolution.
Remove or modify a functional guild to eliminate its function from a microbiome.
Target and kill a single species in a microbiome in a controlled or natural environment.
Remove a function by altering or eliminating a gene or metabolic pathway from a controlled microbiome (e.g., suppress amino acid synthesis to introduce synthetic auxotrophy).
Eliminate an entire functional guild from a natural microbiome, by either genetically removing the function or killing the function-consisting organisms.
Create rapid and robust computational methods to rationally design cocktails (e.g., phages, phage tail-like bacteriocins, inhibitors, CRISPR) to remove desired functional guilds.
Add functional guilds to microbiomes to introduce a new function or modify the existing function.
Design a guild that introduces a new function to a controlled microbiome.
Engineer a guild that changes an existing function in a controlled microbiome.
Readily edit a natural microbiome to create niches for introducing new species.
Manipulate any “native” species in situ in a natural microbiome and bypass culturing, model organisms, or model systems.
At-will manipulation of a specific microbial species or guild within a microbiome.
Expand host range of existing DNA delivery vehicles and precisely define host breadth and efficiency under different environmental conditions.
Further functionalized delivery vehicles to allow for delivery of other biomolecules, such as RNA or protein.
Achieve in vivo genetic manipulation of microbial communities.
Manipulate DNA localization after DNA has been added to a microbiome.
Combine functionalities to make more sophisticated changes to a microbial community, or establish a pipeline where delivery can be achieved for any new bacterium and know the host range.
Rational modification of natural and structured communities in specific applications using multiple modalities (e.g., nucleic acid manipulation, protein engineering, and introduction of new microbial species) guided by computational models.
Footnotes
- Zhao, L., Zhang, F., Ding, X., Wu, G., Lam, Y. Y., Wang, X., Fu, H., Xue, X., Lu, C., Ma, J., Yu, L., Xu, C., Ren, Z., Xu, Y., Xu, S., Shen, H., Zhu, X., Shi, Y., Shen, Q., … Zhang, C. (2018). Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 359(6380), 1151–1156. https://doi.org/10.1126/science.aao5774
- Löffler, F. E., & Edwards, E. A. (2006). Harnessing microbial activities for environmental cleanup. Current Opinion in Biotechnology, 17(3), 274–284. https://doi.org/10.1016/j.copbio.2006.05.001
- Gilmore, S. P., Lankiewicz, T. S., Wilken, St. E., Brown, J. L., Sexton, J. A., Henske, J. K., Theodorou, M. K., Valentine, D. L., & O’Malley, M. A. (2019). Top-Down Enrichment Guides in Formation of Synthetic Microbial Consortia for Biomass Degradation. ACS Synthetic Biology, 8(9), 2174–2185. https://doi.org/10.1021/acssynbio.9b00271
- Lawson, C. E., Harcombe, W. R., Hatzenpichler, R., Lindemann, S. R., Löffler, F. E., O’Malley, M. A., García Martín, H., Pfleger, B. F., Raskin, L., Venturelli, O. S., Weissbrodt, D. G., Noguera, D. R., & McMahon, K. D. (2019). Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 17(12), 725–741. https://doi.org/10.1038/s41579-019-0255-9
- Ando, H., Lemire, S., Pires, D. P., & Lu, T. K. (2015). Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing. Cell Systems, 1(3), 187–196. https://doi.org/10.1016/j.cels.2015.08.013
- Brophy, J. A. N., Triassi, A. J., Adams, B. L., Renberg, R. L., Stratis-Cullum, D. N., Grossman, A. D., & Voigt, C. A. (2018). Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria. Nature Microbiology, 3(9), 1043–1053. https://doi.org/10.1038/s41564-018-0216-5
- Ronda, C., Chen, S. P., Cabral, V., Yaung, S. J., & Wang, H. H. (2019). Metagenomic engineering of the mammalian gut microbiome in situ. Nature Methods, 16(2), 167–170. https://doi.org/10.1038/s41592-018-0301-y
- Wang, G., Zhao, Z., Ke, J., Engel, Y., Shi, Y.-M., Robinson, D., Bingol, K., Zhang, Z., Bowen, B., Louie, K., Wang, B., Evans, R., Miyamoto, Y., Cheng, K., Kosina, S., De Raad, M., Silva, L., Luhrs, A., Lubbe, A., … Yoshikuni, Y. (2019). CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. Nature Microbiology, 4(12), 2498–2510. https://doi.org/10.1038/s41564-019-0573-8
- Yosef, I., Goren, M. G., Globus, R., Molshanski-Mor, S., & Qimron, U. (2017). Extending the Host Range of Bacteriophage Particles for DNA Transduction. Molecular Cell, 66(5), 721-728.e3. https://doi.org/10.1016/j.molcel.2017.04.025
- Fagen, J. R., Collias, D., Singh, A. K., & Beisel, C. L. (2017). Advancing the design and delivery of CRISPR antimicrobials. Current Opinion in Biomedical Engineering, 4, 57–64. https://doi.org/10.1016/j.cobme.2017.10.001
- Yehl, K., Lemire, S., Yang, A. C., Ando, H., Mimee, M., Torres, M. D. T., de la Fuente-Nunez, C., & Lu, T. K. (2019). Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis. Cell, 179(2), 459-469.e9. https://doi.org/10.1016/j.cell.2019.09.015
- Valderrama, J. A., Kulkarni, S. S., Nizet, V., & Bier, E. (2019). A bacterial gene-drive system efficiently edits and inactivates a high copy number antibiotic resistance locus. Nature Communications, 10(1), 5726. https://doi.org/10.1038/s41467-019-13649-6
- Leonard, S. P., Perutka, J., Powell, J. E., Geng, P., Richhart, D. D., Byrom, M., Kar, S., Davies, B. W., Ellington, A. D., Moran, N. A., & Barrick, J. E. (2018). Genetic Engineering of Bee Gut Microbiome Bacteria with a Toolkit for Modular Assembly of Broad-Host-Range Plasmids. ACS Synthetic Biology, 7(5), 1279–1290. https://doi.org/10.1021/acssynbio.7b00399
- Sheth, R. U., Cabral, V., Chen, S. P., & Wang, H. H. (2016). Manipulating Bacterial Communities by in situ Microbiome Engineering. Trends in Genetics, 32(4), 189–200. https://doi.org/10.1016/j.tig.2016.01.005
- Shepherd, E. S., DeLoache, W. C., Pruss, K. M., Whitaker, W. R., & Sonnenburg, J. L. (2018). An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature, 557(7705), 434–438. https://doi.org/10.1038/s41586-018-0092-4