Microbiome Engineering
Functional Biodiversity Goal:

Determine and manipulate the functional composition of microbiomes at the guild level (i.e., top-down engineering).

Current State-of-the-Art

Multiple approaches can be used to isolate and engineer functional microbiomes.  Top-down engineering approaches have been applied to gut microbiomes,1Zhao, L., Zhang, F., Ding, X., Wu, G., Lam, Y. Y., Wang, X., Fu, H., Xue, X., Lu, C., Ma, J., Yu, L., Xu, C., Ren, Z., Xu, Y., Xu, S., Shen, H., Zhu, X., Shi, Y., Shen, Q., … Zhang, C. (2018). Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 359(6380), 1151–1156. https://doi.org/10.1126/science.aao5774 microbiomes for environmental remediation,2Löffler, F. E., & Edwards, E. A. (2006). Harnessing microbial activities for environmental cleanup. Current Opinion in Biotechnology, 17(3), 274–284. https://doi.org/10.1016/j.copbio.2006.05.001 and other microbiomes. A significant benefit to this approach is that communities are enriched based on their function and ability to grow together. However, the current deficiency in broadly applicable genetic tools and culture techniques oftentimes prevents fine-tuned manipulation of these communities, because they usually contain non-model organisms. Antibiotic selection has been used to enrich communities that effectively degrade lignocellulose, at which point a bottom-up approach was used for more detailed study.3Gilmore, S. P., Lankiewicz, T. S., Wilken, St. E., Brown, J. L., Sexton, J. A., Henske, J. K., Theodorou, M. K., Valentine, D. L., & O’Malley, M. A. (2019). Top-Down Enrichment Guides in Formation of Synthetic Microbial Consortia for Biomass Degradation. ACS Synthetic Biology, 8(9), 2174–2185. https://doi.org/10.1021/acssynbio.9b00271 Engineering functional guilds and tools to manipulate them will require improvements in data infrastructure, development of high-throughput microbiome models, and greater coordination between interdisciplinary scientific teams to effectively interpret data for model advancement.4Lawson, C. E., Harcombe, W. R., Hatzenpichler, R., Lindemann, S. R., Löffler, F. E., O’Malley, M. A., García Martín, H., Pfleger, B. F., Raskin, L., Venturelli, O. S., Weissbrodt, D. G., Noguera, D. R., & McMahon, K. D. (2019). Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 17(12), 725–741. https://doi.org/10.1038/s41579-019-0255-9

Techniques exist for delivering DNA to different organisms followed by varying means of genetic manipulation (e.g., maintenance of exogenous DNA, genome editing, gene regulation). However, the ability to deliver DNA or perform genetic manipulations is normally performed in pure cultures in the lab and is limited to a small handful of “model” organisms. Some basic strategies to deliver DNA exist (e.g., conjugation, phage delivery) and are being explored in the context of model microbial communities.5Ando, H., Lemire, S., Pires, D. P., & Lu, T. K. (2015). Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing. Cell Systems, 1(3), 187–196. https://doi.org/10.1016/j.cels.2015.08.013,6Brophy, J. A. N., Triassi, A. J., Adams, B. L., Renberg, R. L., Stratis-Cullum, D. N., Grossman, A. D., & Voigt, C. A. (2018). Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria. Nature Microbiology, 3(9), 1043–1053. https://doi.org/10.1038/s41564-018-0216-5,7Ronda, C., Chen, S. P., Cabral, V., Yaung, S. J., & Wang, H. H. (2019). Metagenomic engineering of the mammalian gut microbiome in situ. Nature Methods, 16(2), 167–170. https://doi.org/10.1038/s41592-018-0301-y,8Wang, G., Zhao, Z., Ke, J., Engel, Y., Shi, Y.-M., Robinson, D., Bingol, K., Zhang, Z., Bowen, B., Louie, K., Wang, B., Evans, R., Miyamoto, Y., Cheng, K., Kosina, S., De Raad, M., Silva, L., Luhrs, A., Lubbe, A., … Yoshikuni, Y. (2019). CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. Nature Microbiology, 4(12), 2498–2510. https://doi.org/10.1038/s41564-019-0573-8,9Yosef, I., Goren, M. G., Globus, R., Molshanski-Mor, S., & Qimron, U. (2017). Extending the Host Range of Bacteriophage Particles for DNA Transduction. Molecular Cell, 66(5), 721-728.e3. https://doi.org/10.1016/j.molcel.2017.04.025 There are also ways available to selectively eliminate individual members of a community using lytic phages or the delivery of CRISPR-based antimicrobials.10Fagen, J. R., Collias, D., Singh, A. K., & Beisel, C. L. (2017). Advancing the design and delivery of CRISPR antimicrobials. Current Opinion in Biomedical Engineering, 4, 57–64. https://doi.org/10.1016/j.cobme.2017.10.001,11Yehl, K., Lemire, S., Yang, A. C., Ando, H., Mimee, M., Torres, M. D. T., de la Fuente-Nunez, C., & Lu, T. K. (2019). Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis. Cell, 179(2), 459-469.e9. https://doi.org/10.1016/j.cell.2019.09.015

Breakthrough Capabilities & Milestones

Characterize the functional guild composition of any microbiome.

Remove or modify a functional guild to eliminate its function from a microbiome.

Add functional guilds to microbiomes to introduce a new function or modify the existing function.

At-will manipulation of a specific microbial species or guild within a microbiome.

Footnotes

  1. Zhao, L., Zhang, F., Ding, X., Wu, G., Lam, Y. Y., Wang, X., Fu, H., Xue, X., Lu, C., Ma, J., Yu, L., Xu, C., Ren, Z., Xu, Y., Xu, S., Shen, H., Zhu, X., Shi, Y., Shen, Q., … Zhang, C. (2018). Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 359(6380), 1151–1156. https://doi.org/10.1126/science.aao5774
  2. Löffler, F. E., & Edwards, E. A. (2006). Harnessing microbial activities for environmental cleanup. Current Opinion in Biotechnology, 17(3), 274–284. https://doi.org/10.1016/j.copbio.2006.05.001
  3. Gilmore, S. P., Lankiewicz, T. S., Wilken, St. E., Brown, J. L., Sexton, J. A., Henske, J. K., Theodorou, M. K., Valentine, D. L., & O’Malley, M. A. (2019). Top-Down Enrichment Guides in Formation of Synthetic Microbial Consortia for Biomass Degradation. ACS Synthetic Biology, 8(9), 2174–2185. https://doi.org/10.1021/acssynbio.9b00271
  4. Lawson, C. E., Harcombe, W. R., Hatzenpichler, R., Lindemann, S. R., Löffler, F. E., O’Malley, M. A., García Martín, H., Pfleger, B. F., Raskin, L., Venturelli, O. S., Weissbrodt, D. G., Noguera, D. R., & McMahon, K. D. (2019). Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 17(12), 725–741. https://doi.org/10.1038/s41579-019-0255-9
  5. Ando, H., Lemire, S., Pires, D. P., & Lu, T. K. (2015). Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing. Cell Systems, 1(3), 187–196. https://doi.org/10.1016/j.cels.2015.08.013
  6. Brophy, J. A. N., Triassi, A. J., Adams, B. L., Renberg, R. L., Stratis-Cullum, D. N., Grossman, A. D., & Voigt, C. A. (2018). Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria. Nature Microbiology, 3(9), 1043–1053. https://doi.org/10.1038/s41564-018-0216-5
  7. Ronda, C., Chen, S. P., Cabral, V., Yaung, S. J., & Wang, H. H. (2019). Metagenomic engineering of the mammalian gut microbiome in situ. Nature Methods, 16(2), 167–170. https://doi.org/10.1038/s41592-018-0301-y
  8. Wang, G., Zhao, Z., Ke, J., Engel, Y., Shi, Y.-M., Robinson, D., Bingol, K., Zhang, Z., Bowen, B., Louie, K., Wang, B., Evans, R., Miyamoto, Y., Cheng, K., Kosina, S., De Raad, M., Silva, L., Luhrs, A., Lubbe, A., … Yoshikuni, Y. (2019). CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. Nature Microbiology, 4(12), 2498–2510. https://doi.org/10.1038/s41564-019-0573-8
  9. Yosef, I., Goren, M. G., Globus, R., Molshanski-Mor, S., & Qimron, U. (2017). Extending the Host Range of Bacteriophage Particles for DNA Transduction. Molecular Cell, 66(5), 721-728.e3. https://doi.org/10.1016/j.molcel.2017.04.025
  10. Fagen, J. R., Collias, D., Singh, A. K., & Beisel, C. L. (2017). Advancing the design and delivery of CRISPR antimicrobials. Current Opinion in Biomedical Engineering, 4, 57–64. https://doi.org/10.1016/j.cobme.2017.10.001
  11. Yehl, K., Lemire, S., Yang, A. C., Ando, H., Mimee, M., Torres, M. D. T., de la Fuente-Nunez, C., & Lu, T. K. (2019). Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis. Cell, 179(2), 459-469.e9. https://doi.org/10.1016/j.cell.2019.09.015
  12. Valderrama, J. A., Kulkarni, S. S., Nizet, V., & Bier, E. (2019). A bacterial gene-drive system efficiently edits and inactivates a high copy number antibiotic resistance locus. Nature Communications, 10(1), 5726. https://doi.org/10.1038/s41467-019-13649-6
  13. Leonard, S. P., Perutka, J., Powell, J. E., Geng, P., Richhart, D. D., Byrom, M., Kar, S., Davies, B. W., Ellington, A. D., Moran, N. A., & Barrick, J. E. (2018). Genetic Engineering of Bee Gut Microbiome Bacteria with a Toolkit for Modular Assembly of Broad-Host-Range Plasmids. ACS Synthetic Biology, 7(5), 1279–1290. https://doi.org/10.1021/acssynbio.7b00399
  14. Sheth, R. U., Cabral, V., Chen, S. P., & Wang, H. H. (2016). Manipulating Bacterial Communities by in situ Microbiome Engineering. Trends in Genetics, 32(4), 189–200. https://doi.org/10.1016/j.tig.2016.01.005
  15. Shepherd, E. S., DeLoache, W. C., Pruss, K. M., Whitaker, W. R., & Sonnenburg, J. L. (2018). An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature, 557(7705), 434–438. https://doi.org/10.1038/s41586-018-0092-4
Last updated: October 1, 2020 Back