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Data Integration, Modeling, and Automation 

Summary 
Data Integration, Modeling, and Automation focuses on robust, systematic use of the 

design, build, test, learn methodology to create complex systems. Progress requires a purpose-
built computational infrastructure that supports DBTL biological processes, the ability to predict 
design outcomes, and optimize manufacturing processes at scale. 

Introduction and Impact 
Applications of engineering biology have grown beyond chemical production to include the 

generation of biosensor organisms for the lab, animal, and field, modification of agricultural 
organisms for nutrition and pest/environmental resilience, production of organisms for 
bioremediation, and live cell and gene/viral therapies. The rapid expansion of the field has 
resulted in new tools and new approaches; however, we are still challenged by the need for novel 
and more robust computational tools and models for engineering biology. For example, improved 
models of synthetic systems and of their interaction with their host organisms will facilitate more 
successful engineering and broader application.  

The foundation of a viable design and manufacturing process for, or using, engineering 
biology is automation, which requires a complete description of a biological system’s components, 
data to describe the system’s function and interconnections, and computational models to predict 
the impact of environmental parameters on the system’s behavior. For each stage and interface 
of the design-build-test-learn framework, we need to specify the new data and algorithms that 
drive experimental design, clarify the assay frameworks that allow computational diagnosis of 
outcomes, assure that metrology is high quality and comparable across sites, integrate 
frameworks that allow algorithmic prediction of process and performance improvements, and build 
interfaces to drive both automated and human-in-the-loop design improvements. 

This information infrastructure for biological design is in a nascent state compared to 
engineering disciplines such as mechanical and electrical engineering, due to the recent 
emergence of the biomanufacturing field. A critical bottleneck is a lack of established “design 
rules,” core aspects of biological and biomolecular function that apply to diverse systems and 
applications. Furthermore, technologies for the utilization, manufacture, and deployment of 
biological systems are still under development. These roadblocks have hampered the 
development of standard computational frameworks to represent and store information about 
biological components, predict system behavior, and diagnose failures. Therefore, widespread 
automation remains out of reach. 

Data Integration, Modeling, and Automation proposes a roadmap towards efficiently 
scaling engineering biology applications from the design, build, test, and learn cycle to the efficient 
and reproducible creation of individual biological components, to intracellular systems, 
multicellular systems, and their operation in diverse environments. This includes access to a 
standard information and modeling ecology to support biological design, manufacture, and quality 
control/diagnosis parallel to those that exist in chemical and other engineering disciplines, but 
which respect the core differences inherent in the biological substrate; standard and accessible 
frameworks that support the effective development and use of information on biological system 
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and component function that are a necessary foundation for widespread biological design; models 
and tools for simulating the behavior of biological components and their interconnected systems 
in their diverse deployment environments that are necessary to support predictive design of these 
systems and diagnosis of their failures; and manufacturing process design and optimization tools 
with similarly attached information systems that are needed to ensure cost- and time- effective 
and scalable production of designed systems with minimal errors. All these systems should ideally 
be connected through findable, accessible, interoperable, and reusable (FAIR) data and process 
modeling efforts so that the community can benefit from their combined experience and work-
products. Together, the protocols, metrology, and computational elements of the design-build-
test-and-learn process can be continually improved. 

Transformative Tools and Technologies 
Integrated biological designs and data models 

The foundation for design is knowledge of the components with which a design can be 
built and the environmental constraints under which the designed system will operate. While 
data can often be sparse for biological systems, there has been significant work in representing 
data about biomolecular function for both basic biology and engineering, including genome 
organization, gene regulatory-network function, metabolic pathways, and other aspects of 
biological function and phenotype. However, the specializations necessary to enable effective 
design across scales, from submolecular to mixed communities of cells in complex 
environments, is lacking.  

The design of proteins and nucleic acids for desired functions has been a long standing 
biotechnological goal. There has been great progress in computational design for gene 
expression control, molecularly responsive nucleic acid structures, and protein structures; 
however, the reliability of these tools is still relatively low and the functional classes accessible 
for design are limited compared to those required. The current status calls for renewed scaling 
efforts in biomolecular characterization so that data driven methods of design can properly 
expand, new data-driven design algorithms and designs-of-experiments to predict such 
molecules, and better physics-based biomolecular design algorithms. 

While design tools for metabolic engineering and gene regulatory network engineering 
have improved greatly over the last decade, they are still relatively limited to a small number of 
model organisms, a limited set of regulator families, and relatively well-characterized metabolic 
pathways. Current tools also have relatively primitive methods for incorporating multi-omic and 
other biological data to constrain their predictions, and tools for informative designs-of-
experiments are lacking. Further, only recently have models of coupling to host resources and 
toxicity, issues of relative fitness and evolutionary robustness, and cross-organism pathway 
design been considered. The operation and design of mixed communities is in a primitive state. 

There are almost no standardized computational approaches to ensure that the 
biological systems produced are measured sufficiently to prove effective and reliable function, to 
diagnose failures, and to predict what parameters or components must change to make the 
design models better match the observations and meet design goals. Integrated biological data 

Engineering Biology: A Research Roadmap for the Next-Generation Bioeconomy

Technical Themes - Data Integration, Modeling, and Automation

100



June 2019 

   

models will be required to understand, predict and control the effect of engineering these 
systems at all levels and time scales.  

Integration of -omics and machine learning for the design-build-test-learn (DBTL) cycle 
Rapid advances in fields that leverage supervised machine learning have owed their 

success to the existence of massive amounts of annotated data. Data that will inform integrated 
biological data models will include measurements of circuit behavior in a cellular context, 
continuous measurements of transcriptome, proteome, and metabolome at the single-cell level, 
measurements that inform bioprocessing at scale, and measurements of the effect of 
engineered organisms on ecological scales. 

Beyond the accumulation of data, theoretical impediments also prevent machine 
learning from accelerating the DBTL cycle. Suppose X is a set of multi-omics measurements, 
and Y is the yield of the desired bioproduct. By training on many multi-omics datasets and 
yields, a machine learning algorithm should be able to take a new multi-omics dataset X’ and 
predict the corresponding yield Y’.  However, the critical question in the DBTL cycle is how to 
use measurements made in the current design to improve the design of the next iteration. That 
is, measurements X’ of the design are not being asked to predict the yield Y’ associated with 
that design. They are instead being asked to predict the yield Y* of a proposed design for which 
no data X* yet exists. Because the current generation of machine learning methods are 
powerless to address counterfactuals, new machine learning algorithms are needed that 
incorporate causal inference to identify interventions that would yield answers to the 
fundamental questions that drive the DBTL cycle (Pearl, 2018). 

While existing multi-omics measurements can provide many features, and collect 
observations on those features in a sufficiently high-throughput manner to fully exploit the 
DBTL, several major inter-linked challenges are data visualization, integration, mining, and 
modeling. Creation of design libraries to exercise design space is needed. Multi-omics aspects 
are useful, but they are generally operated on one design at a time. There is a challenge in 
library creation and scaling -omics measurements for these libraries for machine learning 
techniques to work. Further, ideally molecular and cellular functions have been characterized 
allowing the design-of-experiments to be chosen to minimize the number of manufactured 
variants that cover the most informative parametric space. The challenge therefore is: 1) having 
sufficiently characterized components for effective design of experiments; 2) having sufficient 
information about the cellular function and environmental factors to constrain the machine 
learning models; 3) having sufficient high quality measurement bandwidth for the design-of-
experiment to work; and 4) using machine-learning models to select the next parameter sets to 
try. 

While the variety of available software is enabling more standardized circuit design, 
there are fewer tools available for multi-omics data analyses, data interrogation, data mining 
and machine learning. However, such approaches have recently been validated, where 
combining proteomics and metabolomics data and machine learning allowed the prediction of 
pathway dynamics that outperformed well-established and existing methods (Costello & Martin, 
2018). Furthermore, two recent groundbreaking studies identified design principles for 
optimizing translation in Escherichia coli and the principle regulatory sequences of 5' 
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untranslated regions in yeast using machine learning approaches and large-scale 
measurements (Cambray, Guimaraes, & Arkin, 2018; Cuperus et al., 2017). 

BioCAD tools and design-of-experiment (DoE) approaches 
In many other industries, the maturation of computer-aided design (CAD) systems have 

dramatically increased the productivity of the designer, improved the quality of the design, 
improved communications through documentation, and created shareable databases for 
manufacturing. To achieve the level of sophistication of design automation employed in 
industries such as automotive, shipbuilding, or aerospace, significant progress must be made in 
laying the foundation for computer-aided design for biology (BioCAD) software tools and data 
standards to support the DBTL cycle. For example, the Synthetic Biology Open Language or 
SBOL allows in silico DNA models for synthetic biology to be represented (Galdzicki et al., 
2014). Other examples of integrated BioCAD tools are Diva BioCad and the TeselaGen 
BioCAD/CAM platform (Boeing, Leon, Nesbeth, Finkelstein, & Barnes, 2018), an ‘aspect-
oriented’ BioCAD design and modelling framework, and Cello (Nielsen et al., 2016) for gene 
circuit design automation. Many of these software tools are also currently being integrated into 
biological foundry automation suites, such as the Agile Biofoundry, in order to accelerate these 
processes. In addition, there is an increasing use of Design-of-Experiment (DoE) approaches 
for determining the most efficient experimental testing and measurement strategies (such as 
JMP statistical software from SAS). Such tools are distinct but complement BioCAD tools. 

However, with the rapid growth and uptake of liquid handling automation and medium-
throughput analytics in biofoundries, there is an increasing need to establish standardized 
protocols and reference materials to enable reproducibility and standardized measurements. 
There is also a need to develop numbers and range of software tools to allow interoperability of 
hardware building on platforms like ANTHA, as well as common data formats for measurements 
that can be used for machine learning, and standardized metadata and annotations to compare 
designs between laboratories and companies. The increasing use of large-scale libraries and 
high-throughput automation (such as microfluidic platforms) will inevitably lead to a data-deluge 
which will pose challenges in terms of data storage, data standards, data sharing and data 
visualisation. 

A number of frameworks have recently been developed to aid engineers in turning 
designs of their biomolecules, pathways, and hosts into a set of formal automatable 
manufacturing operations. Further, these tools optimize for reliability and correctness of 
synthesis and efficiency in cost and time-of-production. Some of these link directly into the 
biomolecular and pathway/host design tools to choose optimal "DNA" parts to meet those 
design goals. However, there are not yet sophisticated tools supporting manufacture of high-
complexity structured libraries for design-of-experiments. 

Design tools are at their most powerful when the requirements, limitations, and desired 
outcome of a given design problem can be flexibly and completely specified in domain-specific 
languages (DSLs). These languages can and should support defining metrics against which 
designs can be optimized. Metrics could include, but are not limited to: yield, titer, efficiency, 
costs, environment, and longevity, among many others. Given the multiple scales at which 
design software will be asked to operate (such as for individual genetic networks, whole-cell 

Engineering Biology: A Research Roadmap for the Next-Generation Bioeconomy

Technical Themes - Data Integration, Modeling, and Automation

102

http://f1000.com/work/citation?ids=5779825,5234985&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=1030017&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1030017&pre=&suf=&sa=0
https://agilebiofoundry.org/diva-biocad/
https://teselagen.com/
https://teselagen.com/
http://f1000.com/work/citation?ids=6095188&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1340371&pre=&suf=&sa=0
https://agilebiofoundry.org/
http://www.synthace.com/


June 2019 

   

models, cell-to-cell interactions, and up to entire ecosystems), scale-specific DSLs may be 
appropriate. These languages must be highly expressive but remain digitally interpretable, 
including support for simulation of designs against encoded requirements as a means for 
selection among competing design candidates. These languages may also allow for the storage 
of experimental results that could be formally compared to the specification to determine 
whether a given design satisfies the encoded requirements. 

Automation of ‘Build’ and ‘Test’ 
To increase throughput, capacity, and reproducibility, physical and informatic automation 

efforts have been applied to the Build and Test portions of the biological engineering DBTL 
cycle. The use of (traditional, acoustic, and microfluidic) liquid handling robotics to prepare 
molecular biology reactions (e.g., PCR, DNA assembly) is representative of Build physical 
automation. Test physical automation includes parallel arrays of bioreactors integrated with 
liquid-handlers for automated real-time control (e.g., pH, feeding) and periodic culture sampling 
(for offline analysis). Sample tracking (through laboratory information management systems - 
LIMS), automated protocol design/selection, and data analysis pipelines are characteristic of 
Build and Test informatic automation. The extent of process automation can range from semi-
manual (i.e., stand-alone automated unit operations that interface through a human operator), to 
full automation (autonomous integrated unit operations). Semi-manual and full-automation each 
have advantages: with semi-manual automation, there is process flexibility and decreased 
operational complexity; fully-automated platforms allow high-throughput and “24/7” operations; 
neither process is always preferable to the other. 

Sample-independent performance, unit operation de-coupling, and operational “good-
enough” thresholds enable process automation. Sample-independent methods are more 
amenable to automation due to sample-to-sample performance robustness and the direct 
enablement of method scale-out/parallelization. Representative methods include sequence-
independent DNA assembly methods (vs. traditional sequence-dependent cloning strategies), 
microbial landing-pad strategies that enable the same DNA construct-encoded gene cluster to 
be productively deployed across phylogeny (rather than a bespoke construct for each 
organism), next-generation DNA sequencing methods (vs. primer-directed Sanger sequencing), 
and methods for preparing a single sample for multiple -omics analyses (global or targeted 
metabolomics, proteomics, and/or lipidomics). Very few methods are completely sample-
independent, however, and it is important to have alternative method(s) for samples that prove 
to be problematic for the preferred method. Since technologies (including methods, software, 
and instrumentation) change very quickly, and significant effort is needed to adapt an existing, 
or create a new, automation method, unit operation de-coupling is crucial. The automation of 
any step in a process should ideally be unaffected by a technological change in an upstream or 
downstream step, otherwise all coupled steps need to be re-developed if any one step changes. 
In practice, this is difficult to achieve. For example in Build, it is not yet generally possible to 
Design any DNA sequence for fabrication without being sensitive to the limits of technology and 
method of fabricating the DNA (e.g., how sequence-independent or not the DNA 
synthesis/assembly technology actually is). An important automation-enabling approach is to set 
“good-enough” thresholds. Automated unit operations often process samples in batches, and a 
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key operational decision or stage-gate is to determine what to do with the (anticipated minority) 
of samples that fail to be successfully processed. One approach is to set a threshold, and as 
long as that threshold of samples are successful, to proceed with the successful samples and 
drop the failed ones. It is, of course, possible, and in some cases desirable or necessary, to re-
queue the failed samples (potentially with an alternative method), but at some point repetitively 
failed samples must be abandoned or they will cumulatively drive the automated workflow to a 
halt. 

Towards the desired impact of Build and Test automation increasing efficiencies, rates, 
scope, reliability, and reproducibility, there remain considerable challenges and associated 
opportunities and needs for improvement. These challenges, for example, include that 
technologies change rapidly leading to process instability and the need to chronically re-develop 
automation - like the Red Queen telling Alice she must run to stand still. Additional challenges 
include: that instrumentation differences across facilities limit automation method transferability; 
that the use and reliance upon automation can pose an operational robustness risk if an 
instrument fails (and if there is no instrument redundancy); and that a priori it can be difficult to 
predict which type of method might work effectively for a specific sample. Improvements are 
needed to better understand how transferable automated methods are across facilities and 
instruments, how to develop methods that are more suitable and robust to automation (i.e., less 
sample dependent), to further de-couple unit operations, and to further application of automation 
approaches, for example, to the Build of transcription/translation systems, biomes, and tissues. 

Future requirements of engineering biology databases 
A mature computational infrastructure for biodesign requires powerful access to 

information about biological parts and systems, their environments, their manufacturing 
processes, and their operations in and beyond the laboratory in which they are created. This in 
turn requires findable, accessible, interoperable, and reusable data that enable effective 
aggregation information on biological systems, their environments, and their processes of 
manufacture, and the establishment of standard models of data processing and analysis that 
allow open-development and scalable execution. 

One of the key enablers of any data-intensive field is the production of computational 
frameworks capable of supporting findable, accessible, interoperable, and re-usable (FAIR) data 
and programmatic execution. Adherence to such principles means that informational products 
developed at one location can be found and used at another. Results can be checked, 
combined, and leveraged. While all data cannot be public and open, frameworks that support 
this option enable and strengthen work both within and among organizations and individuals.  

In order to (re)use the vast amount of measurements we expect to capture in future 
engineering biology experiments, new databases will need to adhere to these FAIR Principles: 

● Findable:
○ Data and metadata are assigned globally unique and persistent identifiers.
○ Data are described with rich metadata.
○ Metadata clearly and explicitly include the identifier of the data they describe
○ (Meta)data are registered or indexed in a searchable resource
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● Accessible
○ (Meta)data are retrievable by their identifier using a standardized communication

protocol
○ Metadata should be accessible even when the data is no longer available

● Interoperable
○ (Meta)data use a formal, accessible, shared and broadly applicable language for

knowledge representation
○ (Meta)data use vocabularies that follow FAIR principles
○ (Meta)data include qualified references to other (meta)data

● Reusable
○ (Meta)data are richly described with a plurality of accurate and relevant attributes

For Engineering biology, these principles apply across the DBTL cycle: Designs should 
be FAIR to enable characterization across many different organisms, conditions, and 
implementations for many different teams. Build protocols should be FAIR to ensure 
reproducibility, and multi-omics measurements across many different studies of the same 
organism must be FAIR in order to accumulate enough Test data for Learn activities. (For 
related reading, please see: Wilkinson, M. D., et. al., (2016). The FAIR Guiding Principles for 
scientific data management and stewardship. Scientific Data, 3, 160018. https://doi.org/10.1038/
sdata.2016.18 and, for a related graphic, please see McDermott, J., & Hardeman, M. (2018). 
Increasing Your Research’s Exposure on Figshare Using the FAIR Data Principles. Figshare. 
https://doi.org/10.6084/m9.figshare.7429559.v2) 
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Roadmap Elements 
Goal 1: Establish a computational infrastructure where easy access to data supports the 
DBTL process for biology. 

[Current State-of-the-Art]: The establishment of a computational infrastructure where 
easy access to data supports the DBTL process for biology is sometimes called data ecology. 
This means easy access to data and validated models of biological systems, the processes by 
which they are modified and manufactured, and their reciprocal impact on the environment(s) in 
which they are deployed. At the core, such access requires both databases of this information 
and standards that ensure the right information is captured for design. These standards then 
allow common infrastructures, including applications, programming, and interfaces, for finding, 
transporting, and analyzing this data. Standards support interoperability of information, 
portability and reuse of data, tools, and materials, collaboration among teams because of the 
common communication of data, tools and results, and help to ensure quality, since data and 
tools in standard formats can be checked for errors in more automated ways. Biological design 
presents special challenges in that the systems are far more diverse with much less controlled 
information about them, their operations and interactions with their environment are 
exceptionally complex in the whole compared to electronic systems (though the engineered 
aspects tend to be only a small part of the system), and the principles for design and 
manufacture are evolving rapidly and are highly application specific. The differences among 
engineering a microbe for production of a high-value chemical, engineering a T-cell for treating 
a specific cancer, and engineering a plant for growth and productivity in diverse field 
environments, are large and have different requirements for information and analysis.  

Despite the complexities of the data ecology landscape, engineering biologists are 
increasingly familiar with a large number of key biological information resources. These national 
repositories and workbenches include those available from NCBI and EBI (REFSEQ, PUBMED, 
and SWISSPROT), to established repositories of key biological measurement types (PDB, SRA, 
GEO, ARRAYExpress, and IMG) and more volatile stores like MG-RAST or MicrobesOnline, to 
knowledge representation sites like METACYC, KEGG and BRENDA that together have been 
exceptionally important to interpretation of biological data. These are backed by strong data 
standards groups and ontological development that ensure that data is “represented” using a 
common language, with the appropriate organized characteristics to support automated 
statistical and semantic analysis. Further, there are attempts to unify the object ID space so that 
genes, genomes, taxa, chemicals, etc., can be uniformly labeled and cross referenced and 
searched across data sets and systems. 

Various individual analytical tools and more integrated data and analysis workbenches 
have begun to arise. General purpose open systems, like KBase and Galaxy, serve different 
needs, but allow users to extend and share analytical capabilities and data that cross basic and 
applied biology and biotechnology. The Experimental Data Depot (Morrell et al., 2017) and the 
Joint BioEnergy Institute Inventory of Composable Elements (Ham et al., 2012) serve as a 
repositories and representation of data about bioengineered systems, numerous individual 
genetic device designers like RBSCalculator, and more integrated design systems like Cello, 
are also available. Further, there has been some effort in the synthetic biology community to 
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develop standards for interchangeable data, including the Synthetic Biology Open Language 
(SBOL), the Systems Biology Markup Language (SMBL), and others. 

Currently, there are very few widely used integrated computational DBTL-support 
systems, and of these, they rarely advantage themselves of the large number of diverse 
biological data and analysis resources. Despite some standards efforts, they remain rather 
siloed and use idiosyncratic technologies for data representation and analysis execution that 
hinders community use and development. Further, current focus has been, understandably, on 
the basic design and construction of pathways and less on scalable production/formulation and 
on understanding post-deployment behaviors such as differences in operation outside the 
laboratory, failure modes in real environments, and tracking of designed biological objects in the 
environment and determining their sources and ecological impact (though there are examples of 
each of these). There is opportunity for the engineering/synthetic biology community to better 
advantage itself of the investments being made in other fields of quantitative and systems 
biology, medicine, chemical process engineering, and environmental science, and to establish 
its own best practices and standards for its unique aims. 

There are three main activities associated such an effort that also deeply involve the 
experimental practice of synthetic biology and biological manufacture: 1) establishing strong 
standards for representation of synthetic biological objects, experimental design and process 
control structures, and measurements of these objects and their outcomes in a series of 
increasingly complex environments from initial laboratory creation to the sites of their application 
- these standards should adhere to FAIR (findable, accessible, interoperable, reusable)
conventions and computation representations parseable and analyzable within the frameworks
built for general computational data science (i.e., utilizing standards for ontology, ID space, data
formats (e.g., RDF, JSON), and metadata for provenance); 2) demonstrating scalable
computational libraries and infrastructure for repositing, searching, transporting, and
aggregating/organizing these data types for analysis; and 3) the establishment of open, scalable
software platforms that accelerate efficient, predictable design by enabling integrated access to
the appropriate biological data, presented in design-oriented ways, and supported by a
community-extensible set of tools whose results can be compared and contrasted to determine
best practice over time. In each of these cases, the roadmap calls for starting with designs that
operate in single organisms in laboratory conditions and scale out to multicellular systems
deployed in more open conditions.

[Breakthrough Capability 1]: Established standard and accessible repositories for 
biomanufacturing data and analysis methods. 

● 2 years: Have developed a system of robust communication between academia
and industry surrounding engineering biology data access and needs.

○ [Bottleneck]: Lack of connection and communication between information
systems beyond engineering biology.

■ [Potential Solution]: Identify core needs for common data/model access
spanning molecular and organismal biology, biomanufacturing processes,
and tracking operation in deployment.
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■ [Potential Solution]: In collaboration with existing biological data groups
including those from NCBI/EBI/USDA, etc., develop biological design-
oriented access and standards for data spanning, for example, protein
structure, genomics, genotype-phenotype data, and treatment/disease
data.

■ [Potential Solution]: In collaboration with existing chemical and materials
data groups, develop biological design-oriented access and standards for
data.

● 2 years: Develop findable, accessible, interoperable, and reusable (FAIR) data
standards and open repositories for engineering biology.

○ [Bottleneck]: Lack of standards for data exchange and communication.
■ [Potential Solution]: Prioritize linkage to existing biological databases;

identify the need for establishment of new repositories.
● 5 years: Biomanufacturing-specific data standards and repositories.

○ [Bottleneck]: Lack of universal agreement of standard parameters and
repositories to prioritize.

■ [Potential Solution]: Coordinated effort to obtain input, decision, and
agreement on a set of standards and repositories to use.

[Breakthrough Capability 2]: Common computational infrastructure for finding biological data 
and common APIs for search and analysis. 

● 5 years: Demonstrate common data search and interchange among current
biological and chemical repositories and existing microbial biofabrications.

○ [Bottleneck]: Lack of agreed upon approach to common data search and diversity
among current repositories.

● 5 years: Produce a common library of open design tools, built upon standard
APIs, and supported by portable/virtualized execution environments to
demonstrate best-practice interoperable biomanufacturing software.

○ [Bottleneck]: Missing incentives for development and use of open design tools.
● 10 years: Produce a common library of open design tools for more open medical

and agricultural environments.
○ [Bottleneck]: Availability of design tools geared specifically to the unique

requirements of biomedical and agricultural data collection and use.
[Breakthrough Capability 3]: End-to-end, industry-normed design software platforms for 
engineered biological systems. 

● 5 years: Develop industry-accepted, sharable assessments of current data tools
and uses in reducing cost and increasing reliability of executing the DBTL cycle.

○ [Bottleneck]: Missing incentives for industry coordination and collaboration on
tools assessment.

● 10 years: Create an industry-accepted, open-source or publically-accessible
version of industrially-relevant DBTL software and data.

○ [Bottleneck]: Agreement on standards and interoperability as well as complete
understanding of industry needs required to enable full utilization.
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Goal 2: Establish functional prediction through biological engineering design at the 
biomolecular, cellular, and consortium scale. 

[Current State-of-the-Art]: ROSETTA, MOE, and NAMD are representative software 
platforms for biomolecular structure-based design and for the simulation of small molecules and 
peptides to proteins and larger systems. Google DeepMind’s recent success at CASP13 
(AlQuraishi, 2019) demonstrated that machine-learning approaches are also increasingly 
effective for biomolecular structure prediction, and it is anticipated that design and simulation 
will increasingly integrate physics- and structure-based modeling with statistical comparative- 
and screening-based data. Existing software tools are largely sufficient to design protein 
libraries to experimentally explore molecular space, predict protein domains and other structural 
boundaries, and leverage comparative (meta)genomics to build deep sets of sequence 
orthologs for important protein classes and suggest tolerable/efficacious mutation locations. 
Current limitations of these software include dependencies upon imperfect force-fields, a lack of 
full quantitative and allosteric modeling and parallel computation, and insufficient design-of-
experiments support and structural coverage for statistical analyses. While it seems likely that 
high-throughput screening combined with machine learning may provide a data-driven approach 
to identifying function from sequence without resorting to first principles or ground-up 
approaches, measuring molecular activity at scale remains a key bottleneck. 

The design of organisms with a targeted metabolic function (e.g., overexpression of a 
single biomolecular species) requires computational tools that: 1) identify sets of proteins that 
can convert readily available molecules to high value products, each protein performing one of a 
series of chemical modifications; and 2) identify best sets of enzymes and their stoichiometry 
that can work together as parts of pathways in the context of cellular metabolism. On the 
pathway level, genome-scale metabolic models link genotype to phenotype through the 
reconstruction of the complete metabolic reaction network of an organism. This technique can 
be used to define theoretical production limits and design and test new microbial strains in silico. 
This approach has been especially effective for predicting and improving metabolite production 
rates in heterologous biosynthetic pathways. Flux Balance Analysis (FBA), Flux Variability 
Analysis (FVA), and minimization of metabolic adjustment (MOMA) have been successfully 
used, in combination with genome-scale metabolic models, to predict cell growth, flux 
distribution, product synthesis, and to guide host design. A MATLAB toolbox called COBRA 
(“COnstraint-Based Reconstruction and Analysis; (Heirendt et al., 2019)) provides a convenient 
framework to simulate and analyze the phenotypic behavior of a genome-scale stoichiometric 
model (Schellenberger, Lewis, & Palsson, 2011), and retrobiosynthesis tools such as BNICE 
(“Biochemical Network Integrated Computational Explorer”) and RetroPath are used to design 
new or improved biochemical pathways (Medema, van Raaphorst, Takano, & Breitling, 2012). In 
these design tools, software identifies novel metabolites, reactions, and whole pathways by 
predicting promiscuity based on classification of enzymes according to their chemical action. On 
the cellular level, a wide variety of host design tools have been developed for identification of 
gene targets for knockout, overexpression, or downregulation, introduction of non-native 
enzymatic reactions, and elimination of competing pathways in order to improve the cellular 
phenotypes (Long, Ong, & Reed, 2015). Pathway and host improvements achieved from these 
design tools are often non-intuitive and non-obvious. And, while genome-scale metabolic 
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models have been important for metabolic engineering efforts with organic compounds, 
advances are still required to transform the bioeconomy. 

When it comes to community and consortia design, we are primarily in a state of data 
gathering and developing a baseline understanding of microbial communities across diverse 
locations/ecosystems, thus tools for multi-scale modeling at multicellular, organismal, and 
population levels have yet to be developed. 

[Breakthrough Capability 1]: Fully-automated molecular design from integrated, large-scale 
design data frameworks. 

● 2 years: Structure- and comparative analysis-based libraries for automated
directed evolution, with feedback of large-scale results to algorithms.

○ [Bottleneck]: Lack of shared libraries and robust assessment of computational
approaches to directed evolution.

● 5 years: Automated designs for integrated manufacturing to enable more
successful, iterated workflows.

○ [Bottleneck]: Lack of integration of automation design tools.
● 5 years: Large-scale design data generation to inform next-generation algorithms

for molecular design.
○ [Bottleneck]: Insufficient standards and coordination among data generators to

create robust datasets that can be successfully used for design.
● 10 years: Use of large-scale design data in integrated frameworks.

○ [Bottleneck]: Lack of standardized datasets that can be integrated into diverse
frameworks.

● 20 years: Design and integration of thousands of critical catalytic activities into
proteins for a set of model hosts and creation of standard tools for allosteric
control of these activities.

○ [Bottleneck]: The current lack of standardized data, integration across platforms,
and models of unknown catalytic activity put this currently make part, pathway,
model integration far out of reach.

[Breakthrough Capability 2]: Use of enzyme promiscuity prediction algorithms to design 
biosynthetic pathways for any molecule (natural or non-natural). 

● 2 years: Retro-biosynthesis software that can identify any biological or
biochemical route to any organic molecule.

○ [Bottleneck]: There are a nearly infinite number of chemicals that we want to
produce using engineered hosts; however, the routes (biological-only or a
combination of biological and chemical) to these chemicals are not always known
or easy to imagine.

■ [Potential Solution]: Develop retrobiosynthesis software for all known
metabolic pathways in all life forms and integrate that software with
retrosynthesis software of all chemical catalysis to develop pathways to
nearly any organic chemical.
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● 5 years: Data integration for certain classes of enzymes and pathways and
predictable host-specific expression in model organisms.

○ [Bottleneck]: Limited integrated data to link pathway activity and expression.
■ [Potential Solution]: Specialized pathway optimization tools for these

pathways and molecules.
● 20 years: Integrated data that allows on-demand characterization, standardization,

insertion, and deployment of natural and non-natural pathways.
○ [Bottleneck]: Lack of data integration and standards for data sharing.

[Breakthrough Capability 3]: Scalable, data-driven host design for complex environments that 
enable high-level production of natural biomolecules. 

● 2 years: Ability to make and screen multiple host mutations for epistasis mapping
and synthetic interactions, making large-scale host optimization possible.

○ [Bottleneck]: Limits of data integration and databases of characterized genetic
and pathway/circuit interactions.

■ [Potential Solution]: Backed-by-design tools based on merging pathway
knowledge and experiential databases.

● 2 years: Better data on physiology and fitness in deployment environments
suitable for informing designs in validated lab-scale simulations that meet activity,
persistence, and ecological impact goals.

○ [Bottleneck]: Limited data availability and lack of a coordinated collection effort.
● 5 years: Thematic design rules for host system engineering inferred from data.

○ [Bottleneck]: Limits of data integration and feedback into design for desired
production of molecules from discrete pathways/circuits in select organisms.

■ [Potential Solution]: Tools for specific host system optimization given
production/activity class of target molecules (including sensors,
regulators, and pathways).

● 5 years: Tools to acquire and transfer data to a novel host to inform both genetic-
domestication and prediction and determination of function.

○ [Bottleneck]: Limited data and predictive models for cross host domestication and
function determination.

● 5 years: Novel design tools to support host design for more complex, natural
(non-laboratory) environments.

○ [Bottleneck]: The currently available tools and datasets to integrate host design
and ecological data are limited and not standardized for cross-domain analysis.

● 20 years: Data-driven domestication of any new host for new activities in any
environment and scale.

○ [Bottleneck]: A diverse dataset and robust algorithms to fully model
domestication of any potential host.

[Breakthrough Capability 4]: Enabled design of functional, self-supporting ecosystems. 
● 2 years: Data-driven tools for selecting organisms for synthetic assemblies to

achieve resistant, resilient activity.
○ [Bottleneck]: Lack of open-source tool development focused directly on organism

selection.

Engineering Biology: A Research Roadmap for the Next-Generation Bioeconomy

Technical Themes - Data Integration, Modeling, and Automation

113



June 2019 

   

● 2 years: Direct data collection for the most important communities in human,
agriculture, and complex bioreactor work sufficient for informing design.

○ [Bottleneck]: Lack of standardized framework for data collection.
● 2 years: Modeling tools to identify cross-organismal networks and ecological

interactions.
○ [Bottleneck]: Insufficient data to support models in complex environments.

● 10 years: Integration of molecular, pathway, and host design to create and build
models of genetically-engineered communities that function predictably, in the
context of deployment ecology.

○ [Bottleneck]: Inability to infer or determine cellular- and subcellular-level
mechanistic-modes due to computational complexity.

■ [Potential Solution]: Develop more comprehensive algorithms for
modeling purposes that specifically take advantage of domain specific
knowledge, algorithmic advances leveraging parallelization, and hardware
advances, such as the use of specialized electronic circuits.

● 20 years: Ability to design and build functional, enclosed, self-supporting
ecosystems of multiple engineered microbial species for efficient industrial
production.

○ [Bottleneck]: Lack of data, tools, and standards for the production and
dissemination of data-driven design-build integration.

● 20 years: Ability to design, model, and engineer microbial consortia to
simultaneously and efficiently produce multiple products of interest with minimal
by-products and waste.

○ [Bottleneck]: Lack of understanding, data, and models on how complex consortia
interact and the implications of such interactions that can affect engineering
goals.

Goal 3: Establish optimal manufacturing processes from the unit-operation to the 
integrated-screening scale. 

[Current State-of-the-Art]: Current state-of-the-art capabilities for generalized biofabrication 
reside primarily in large, well-established organizations (such as the Broad Institute) and biotechnology 
companies (such as Zymergen). The state-of-the-art, however, is still a somewhat ad-hoc assemblage 
of product-oriented tools, customized software local to that institution, proprietary data sets, custom 
automation solutions, and customized data-logging and analysis systems. Often, industry views its 
proprietary approach to data flow and informatics as unique and as a large part of their value-
proposition and tends to sequester informatics gains to particular institutions. However, to address this, 
there is a rapidly growing number of public-funded, non-commercial bio-foundries, which has recently 
resulted in the establishment of the Global Biofoundries Alliance (Hillson et al., 2019). The aims of the 
Alliance are to establish open technology platforms that will allow the sharing of automation workflows 
and protocols, software, reference materials and best practices which may lead to new standards for 
measurement and data, as well as global capacity for establishing optimal manufacturing processes for 
synthetic biology. 
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[Breakthrough Capability]: Standardized informatics tools, data, and automation platforms for 
efficient and collaborative use and integration of data in order to develop novel products more 
quickly.  

● 2 years: Establish communications and networks to develop democratized
platforms for data exchange and automation across industry and academia.

○ [Bottleneck]: Lack of standards for data exchange and communication, lack of
standards of automation platforms, and extreme cost of automation for
implementation in non-industrial settings.

■ [Potential Solution]: Dialogue between industry and academic scientists to
develop standardized, cheaper, automated platforms for high-throughput
experimentation of commonly used microbes.

■ [Potential Solution]: Development of a greater number and better-
connected industry-academic consortia to share ideas, equipment, and
platforms.

● 5 years: Democratized platform for data exchange related to standard/model
microorganisms.

○ [Bottleneck]: Lack of standards for exchange of design information and
communication with automated systems for both build-execution and test-data-
acquisition for commonly used microbes.

■ [Potential Solution]: Launch new industrial-academic consortia or
partnerships that leverage shared automation technology and platforms.

■ [Potential Solution]: Start leveraging consortia to develop industry- and
academia-wide data-logging, -analysis, and -sharing standards.

■ [Potential Solution]: Create standards-based approach to data exchange
with access to integrated, generalized databases.

■ [Potential Solution]: Incorporation of design-of-experiments strategies that
integrate the economics of obtaining data and required standards for data
precision and accuracy.

■ [Potential Solution]: Collaborations to develop new data analysis tools
specific to biology.

■ [Potential Solution]: Miniaturization of automated host engineering and
analytical systems and integration into desktop machines able to re-
engineer microbes. These machines may act genome-wide, in an
automated fashion without human interference, i.e., from design to
organism in one iteration.

● 5 years: Initial development of a database of organisms beyond E. coli and S.
cerevisiae (i.e., a database of non-model organisms), that leverages existing
databases, to integrate predicted pathways, and -omics data that confirm specific
production of a compound of interest.

○ [Bottleneck]: There are many organisms that might be useful in a particular
environment or for producing a particular chemical; however, identifying the most
useful hosts beyond current model organisms is challenging.
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■ [Potential Solution]: Leverage existing databases (Biocyc, KEGG, etc.) to
construct a database of non-model organisms that focuses on the known
functionality of the non-model organism.

● 10 years: Democratized platform for non-model organisms and microbial
communities.

○ [Bottleneck]: Lack of standards for exchange of design information and
communication with automated systems for both build-execution and test-data-
acquisition for non-model microbes.

■ [Potential Solution]: Extend industry-academic consortia, and
platforms/data sharing solutions for model organisms (5 year milestones)
to problems associated with non-model organisms.

■ [Potential Solution]: Extend microfluidics approaches to experiments with
non-model organisms.

● 10 years: Democratized suite of platforms that can be utilized across different
model systems.

○ [Bottleneck]: Full biological characterization of greater libraries of organisms,
including transferability of design, modeling, and engineering strategies between
organisms.

■ [Potential Solution]: Extend industry-academic consortia, and
platforms/data sharing solutions for model organisms (5 year milestones)
to problems associated with non-model organisms.

■ [Potential Solution]: Extend microfluidics approaches to experiments with
non-model organisms.

● 20 years: Full machine learning capabilities and ability of algorithms to run greater
than 90% of the DBTL+automation cycle.

○ [Bottleneck]: Current understanding of the principles behind optimal design for
complex systems is still limited.

■ [Potential Solution]: Improve predictability of complex systems through
many years of iterations of current algorithms; much of this solution
should happen organically honing of machine learning and artificial
intelligence algorithms continues over time, particularly with increased
access to standardized data and democratized automation platforms.

■ [Potential Solution]: Work to create new data, coding, and analytical
languages that better capture the rules of biology.
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